These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 15149204)

  • 1. Nanomechanical control of glucopyranose rotamers.
    Lee G; Nowak W; Jaroniec J; Zhang Q; Marszalek PE
    J Am Chem Soc; 2004 May; 126(20):6218-9. PubMed ID: 15149204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate solution simulations: producing a force field with experimentally consistent primary alcohol rotational frequencies and populations.
    Kuttel M; Brady JW; Naidoo KJ
    J Comput Chem; 2002 Oct; 23(13):1236-43. PubMed ID: 12210149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B3LYP/6-311++G** geometry-optimization study of pentahydrates of alpha- and beta-D-glucopyranose.
    Momany FA; Appell M; Willett JL; Bosma WB
    Carbohydr Res; 2005 Jul; 340(9):1638-55. PubMed ID: 15925351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT study of alpha- and beta-D-allopyranose at the B3LYP/6-311++G ** level of theory.
    Schnupf U; Willett JL; Bosma WB; Momany FA
    Carbohydr Res; 2007 Feb; 342(2):196-216. PubMed ID: 17204259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of forced conformational transitions in 1,6-linked polysaccharides.
    Lee G; Nowak W; Jaroniec J; Zhang Q; Marszalek PE
    Biophys J; 2004 Sep; 87(3):1456-65. PubMed ID: 15345528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT study of alpha- and beta-D-galactopyranose at the B3LYP/6-311++G** level of theory.
    Momany FA; Appell M; Willett JL; Schnupf U; Bosma WB
    Carbohydr Res; 2006 Mar; 341(4):525-37. PubMed ID: 16414033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Several transition states from (4)C(1) to skew conformations of beta-D-glucopyranose.
    Kurihara Y; Ueda K
    Carbohydr Res; 2009 Nov; 344(16):2266-9. PubMed ID: 19766991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic properties of single amylose chains in water: a quantum mechanical and AFM study.
    Lu Z; Nowak W; Lee G; Marszalek PE; Yang W
    J Am Chem Soc; 2004 Jul; 126(29):9033-41. PubMed ID: 15264836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT study of alpha- and beta-D-mannopyranose at the B3LYP/6-311++G** level.
    Appell M; Willett JL; Momany FA
    Carbohydr Res; 2005 Feb; 340(3):459-68. PubMed ID: 15680602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel open-chain nononic acid linked by an ether bond to glucose as a polysaccharide constituent.
    Faber EJ; van Kuik JA; Halkes KM; Kamerling JP; Vliegenthart JF
    Chemistry; 2002 Oct; 8(19):4498-505. PubMed ID: 12355538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated C-C and C-O bond conformations in saccharide hydroxymethyl groups: parametrization and application of redundant 1H-1H, 13C-1H, and 13C-13C NMR J-couplings.
    Thibaudeau C; Stenutz R; Hertz B; Klepach T; Zhao S; Wu Q; Carmichael I; Serianni AS
    J Am Chem Soc; 2004 Dec; 126(48):15668-85. PubMed ID: 15571389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. B3LYP/6-311++G** study of alpha- and beta-D-glucopyranose and 1,5-anhydro-D-glucitol: 4C1 and 1C4 chairs, (3,O)B and B(3,O) boats, and skew-boat conformations.
    Appell M; Strati G; Willett JL; Momany FA
    Carbohydr Res; 2004 Feb; 339(3):537-51. PubMed ID: 15013391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycosidic linkage rotations determine amylose stretching mechanism.
    Kuttel M; Naidoo KJ
    J Am Chem Soc; 2005 Jan; 127(1):12-3. PubMed ID: 15631424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereoelectronic and solvation effects determine hydroxymethyl conformational preferences in monosaccharides.
    Barnett CB; Naidoo KJ
    J Phys Chem B; 2008 Dec; 112(48):15450-9. PubMed ID: 18989909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring.
    Marszalek PE; Oberhauser AF; Pang YP; Fernandez JM
    Nature; 1998 Dec; 396(6712):661-4. PubMed ID: 9872313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutron diffraction and simulation studies of the exocyclic hydroxymethyl conformation of glucose.
    Mason PE; Neilson GW; Enderby JE; Saboungi ML; Cuello G; Brady JW
    J Chem Phys; 2006 Dec; 125(22):224505. PubMed ID: 17176147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conformational free energy landscape of beta-D-glucopyranose. Implications for substrate preactivation in beta-glucoside hydrolases.
    Biarnés X; Ardèvol A; Planas A; Rovira C; Laio A; Parrinello M
    J Am Chem Soc; 2007 Sep; 129(35):10686-93. PubMed ID: 17696342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational properties of and a reorientation triggered by sugar-water vibrational resonance in the hydroxymethyl group in hydrated beta-glucopyranose.
    Suzuki T; Kawashima H; Sota T
    J Phys Chem B; 2006 Feb; 110(5):2405-18. PubMed ID: 16471832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational pathways of saturated six-membered rings. A static and dynamical density functional study.
    Ionescu AR; Bérces A; Zgierski MZ; Whitfield DM; Nukada T
    J Phys Chem A; 2005 Sep; 109(36):8096-105. PubMed ID: 16834195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of the relative stability of rotational conformers of alpha and beta-D-glucopyranose in gas phase and aqueous solution.
    Corchado JC; Sánchez ML; Aguilar MA
    J Am Chem Soc; 2004 Jun; 126(23):7311-9. PubMed ID: 15186168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.