BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15149230)

  • 1. A synthetic reaction network: chemical amplification using nonequilibrium autocatalytic reactions coupled in time.
    Gerdts CJ; Sharoyan DE; Ismagilov RF
    J Am Chem Soc; 2004 May; 126(20):6327-31. PubMed ID: 15149230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system.
    Shestopalov I; Tice JD; Ismagilov RF
    Lab Chip; 2004 Aug; 4(4):316-21. PubMed ID: 15269797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCR microfluidic devices for DNA amplification.
    Zhang C; Xu J; Ma W; Zheng W
    Biotechnol Adv; 2006; 24(3):243-84. PubMed ID: 16326063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenging the concept of "recycling" as a mechanism for the evolution of homochirality in chemical reactions.
    Blackmond DG
    Chirality; 2009 Mar; 21(3):359-62. PubMed ID: 18570293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated microfluidic chip for the analysis of biochemical reactions by MALDI mass spectrometry.
    Lee SH; Lee CS; Kim BG; Kim YK
    Biomed Microdevices; 2008 Feb; 10(1):1-9. PubMed ID: 17610068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets.
    Beer NR; Hindson BJ; Wheeler EK; Hall SB; Rose KA; Kennedy IM; Colston BW
    Anal Chem; 2007 Nov; 79(22):8471-5. PubMed ID: 17929880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microdroplets: a sea of applications?
    Huebner A; Sharma S; Srisa-Art M; Hollfelder F; Edel JB; Demello AJ
    Lab Chip; 2008 Aug; 8(8):1244-54. PubMed ID: 18651063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.
    Qian H; Beard DA
    Biophys Chem; 2005 Apr; 114(2-3):213-20. PubMed ID: 15829355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical reaction imaging within microfluidic devices using confocal raman spectroscopy: the case of water and deuterium oxide as a model system.
    Sarrazin F; Salmon JB; Talaga D; Servant L
    Anal Chem; 2008 Mar; 80(5):1689-95. PubMed ID: 18225863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting autocatalytic, self-sustaining sets in chemical reaction systems.
    Hordijk W; Steel M
    J Theor Biol; 2004 Apr; 227(4):451-61. PubMed ID: 15038982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of complex reaction mechanisms. Analysis of chemical, biological and genetic networks.
    Ross J
    J Phys Chem A; 2008 Mar; 112(11):2134-43. PubMed ID: 18275175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution.
    Harel E; Pines A
    J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serial processing of biological reactions using flow-through microfluidic devices: coupled PCR/LDR for the detection of low-abundant DNA point mutations.
    Hashimoto M; Barany F; Xu F; Soper SA
    Analyst; 2007 Sep; 132(9):913-21. PubMed ID: 17710267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-activated microfluidic rotary devices for pumping and mixing.
    Tseng HY; Wang CH; Lin WY; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):545-54. PubMed ID: 17505888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications.
    Dorfman KD; Chabert M; Codarbox JH; Rousseau G; de Cremoux P; Viovy JL
    Anal Chem; 2005 Jun; 77(11):3700-4. PubMed ID: 15924408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of molecular-dynamics simulation results using feedforward neural networks: reaction of a C2 dimer with an activated diamond (100) surface.
    Agrawal PM; Samadh AN; Raff LM; Hagan MT; Bukkapatnam ST; Komanduri R
    J Chem Phys; 2005 Dec; 123(22):224711. PubMed ID: 16375499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes.
    Lee ES; Robinson D; Rognlien JL; Harnett CK; Simmons BA; Bowe Ellis CR; Davalos RV
    Bioelectrochemistry; 2006 Sep; 69(1):117-25. PubMed ID: 16483852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent sensitivity analysis of biological networks: coupled MAPK and PI3K signal transduction pathways.
    Hu D; Yuan JM
    J Phys Chem A; 2006 Apr; 110(16):5361-70. PubMed ID: 16623463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis.
    Yamada M; Doi S; Maenaka H; Yasuda M; Seki M
    J Colloid Interface Sci; 2008 May; 321(2):401-7. PubMed ID: 18342873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalysis in reaction networks.
    Gopalkrishnan M
    Bull Math Biol; 2011 Dec; 73(12):2962-82. PubMed ID: 21503834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.