BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 15149398)

  • 1. Uneven segregation of sporophytic self-incompatibility alleles in Arabidopsis lyrata.
    Bechsgaard J; Bataillon T; Schierup MH
    J Evol Biol; 2004 May; 17(3):554-61. PubMed ID: 15149398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection at work in self-incompatible Arabidopsis lyrata. II. Spatial distribution of S haplotypes in Iceland.
    Schierup MH; Bechsgaard JS; Christiansen FB
    Genetics; 2008 Oct; 180(2):1051-9. PubMed ID: 18780752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linkage disequilibrium and recombination rate estimates in the self-incompatibility region of Arabidopsis lyrata.
    Kamau E; Charlesworth B; Charlesworth D
    Genetics; 2007 Aug; 176(4):2357-69. PubMed ID: 17565949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the linkage maps of the close relatives Arabidopsis lyrata and A. thaliana.
    Kuittinen H; de Haan AA; Vogl C; Oikarinen S; Leppälä J; Koch M; Mitchell-Olds T; Langley CH; Savolainen O
    Genetics; 2004 Nov; 168(3):1575-84. PubMed ID: 15579708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breakdown of self-incompatibility due to genetic interaction between a specific S-allele and an unlinked modifier.
    Li Y; Mamonova E; Köhler N; van Kleunen M; Stift M
    Nat Commun; 2023 Jun; 14(1):3420. PubMed ID: 37296115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sporophytic self-incompatibility in Senecio squalidus (Asteraceae): S allele dominance interactions and modifiers of cross-compatibility and selfing rates.
    Brennan AC; Tabah DA; Harris SA; Hiscock SJ
    Heredity (Edinb); 2011 Jan; 106(1):113-23. PubMed ID: 20372180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the number of self-incompatibility alleles in finite populations: From old models to new results.
    Czuppon P; Billiard S
    J Evol Biol; 2022 Oct; 35(10):1296-1308. PubMed ID: 35852940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genealogy-dependent variation in viability among self-incompatibility genotypes.
    Uyenoyama MK
    Theor Popul Biol; 2003 Jun; 63(4):281-93. PubMed ID: 12742174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Comment on Saumitou et al. (2017): Elucidation of the genetic architecture of self-incompatibility in olive: evolutionary consequences and perspectives for orchard management'.
    Breton C; Koubouris G; Villemur P; Bervillé AJ
    Evol Appl; 2017 Oct; 10(9):855-859. PubMed ID: 29151876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction to: Revisiting the number of self-incompatibility alleles in finite populations: From old models to new results.
    J Evol Biol; 2024 May; ():. PubMed ID: 38810229
    [No Abstract]   [Full Text] [Related]  

  • 11. Transition to Self-compatibility Associated With Dominant S-allele in a Diploid Siberian Progenitor of Allotetraploid Arabidopsis kamchatica Revealed by Arabidopsis lyrata Genomes.
    Kolesnikova UK; Scott AD; Van de Velde JD; Burns R; Tikhomirov NP; Pfordt U; Clarke AC; Yant L; Seregin AP; Vekemans X; Laurent S; Novikova PY
    Mol Biol Evol; 2023 Jul; 40(7):. PubMed ID: 37432770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new genetic locus for self-compatibility in the outcrossing grass species perennial ryegrass (Lolium perenne).
    Slatter LM; Barth S; Manzanares C; Velmurugan J; Place I; Thorogood D
    Ann Bot; 2021 May; 127(6):715-722. PubMed ID: 32856713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of self-incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection.
    Durand E; Chantreau M; Le Veve A; Stetsenko R; Dubin M; Genete M; Llaurens V; Poux C; Roux C; Billiard S; Vekemans X; Castric V
    Evol Appl; 2020 Jul; 13(6):1279-1297. PubMed ID: 32684959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for Adaptive Introgression of Disease Resistance Genes Among Closely Related
    Bechsgaard J; Jorgensen TH; Schierup MH
    G3 (Bethesda); 2017 Aug; 7(8):2677-2683. PubMed ID: 28630104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What causes mating system shifts in plants? Arabidopsis lyrata as a case study.
    Mable BK; Hagmann J; Kim ST; Adam A; Kilbride E; Weigel D; Stift M
    Heredity (Edinb); 2017 Jan; 118(1):52-63. PubMed ID: 27804968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution and function of genomic imprinting in plants.
    Rodrigues JA; Zilberman D
    Genes Dev; 2015 Dec; 29(24):2517-31. PubMed ID: 26680300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent and ancient signature of balancing selection around the S-locus in Arabidopsis halleri and A. lyrata.
    Roux C; Pauwels M; Ruggiero MV; Charlesworth D; Castric V; Vekemans X
    Mol Biol Evol; 2013 Feb; 30(2):435-47. PubMed ID: 23104079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inbreeding depression in self-incompatible North-American Arabidopsis lyrata: disentangling genomic and S-locus-specific genetic load.
    Stift M; Hunter BD; Shaw B; Adam A; Hoebe PN; Mable BK
    Heredity (Edinb); 2013 Jan; 110(1):19-28. PubMed ID: 22892638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz).
    Rabbi IY; Kulembeka HP; Masumba E; Marri PR; Ferguson M
    Theor Appl Genet; 2012 Jul; 125(2):329-42. PubMed ID: 22419105
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.