BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 15149817)

  • 1. A model for the misfolded bis-His intermediate of cytochrome c: the 1-56 N-fragment.
    Santoni E; Scatragli S; Sinibaldi F; Fiorucci L; Santucci R; Smulevich G
    J Inorg Biochem; 2004 Jun; 98(6):1067-77. PubMed ID: 15149817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of an equilibrium unfolding intermediate in cytochrome c.
    Latypov RF; Cheng H; Roder NA; Zhang J; Roder H
    J Mol Biol; 2006 Mar; 357(3):1009-25. PubMed ID: 16473367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of heme axial ligands in the conformational stability of the native and molten globule states of horse cytochrome c.
    Hamada D; Kuroda Y; Kataoka M; Aimoto S; Yoshimura T; Goto Y
    J Mol Biol; 1996 Feb; 256(1):172-86. PubMed ID: 8609608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The heme-containing N-fragment (residues 1-56) of cytochrome c is a bis-histidine functional system.
    Santucci R; Fiorucci L; Sinibaldi F; Polizio F; Desideri A; Ascoli F
    Arch Biochem Biophys; 2000 Jul; 379(2):331-6. PubMed ID: 10898952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-native heme-histidine ligation promotes microsecond time scale secondary structure formation in reduced horse heart cytochrome c.
    Chen E; Abel CJ; Goldbeck RA; Kliger DS
    Biochemistry; 2007 Oct; 46(43):12463-72. PubMed ID: 17914866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemistry of unfolded cytochrome c in neutral and acidic urea solutions.
    Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH
    J Am Chem Soc; 2005 May; 127(20):7638-46. PubMed ID: 15898816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photodissociation of heme distal methionine in ferrous cytochrome C revealed by subpicosecond time-resolved resonance Raman spectroscopy.
    Cianetti S; Négrerie M; Vos MH; Martin JL; Kruglik SG
    J Am Chem Soc; 2004 Nov; 126(43):13932-3. PubMed ID: 15506748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of de novo cytochromes c.
    Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y
    Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein misfolding: optional barriers, misfolded intermediates, and pathway heterogeneity.
    Krishna MM; Lin Y; Englander SW
    J Mol Biol; 2004 Oct; 343(4):1095-109. PubMed ID: 15476824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of ligand substitution in ferrocytochrome c folding.
    Telford JR; Tezcan FA; Gray HB; Winkler JR
    Biochemistry; 1999 Feb; 38(6):1944-9. PubMed ID: 10026276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the predominant non-native histidine ligand in unfolded cytochrome c.
    Colón W; Wakem LP; Sherman F; Roder H
    Biochemistry; 1997 Oct; 36(41):12535-41. PubMed ID: 9376358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome c(553), a small heme protein that lacks misligation in its unfolded state, folds with rapid two-state kinetics.
    Guidry J; Wittung-Stafshede P
    J Mol Biol; 2000 Aug; 301(4):769-73. PubMed ID: 10966783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide.
    Cowley AB; Lukat-Rodgers GS; Rodgers KR; Benson DR
    Biochemistry; 2004 Feb; 43(6):1656-66. PubMed ID: 14769043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy.
    Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG
    J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does reorganization energy change upon protein unfolding? Monitoring the structural perturbations in the heme cavity of cytochrome c.
    Shafiey H; Ghourchian H; Mogharrab N
    Biophys Chem; 2008 May; 134(3):225-31. PubMed ID: 18325656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR investigation of ferricytochrome c unfolding: detection of an equilibrium unfolding intermediate and residual structure in the denatured state.
    Russell BS; Melenkivitz R; Bren KL
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8312-7. PubMed ID: 10880578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization.
    Pierce MM; Nall BT
    J Mol Biol; 2000 May; 298(5):955-69. PubMed ID: 10801361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heme coordination states of unfolded ferrous cytochrome C.
    Droghetti E; Oellerich S; Hildebrandt P; Smulevich G
    Biophys J; 2006 Oct; 91(8):3022-31. PubMed ID: 16877519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.