BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15150268)

  • 1. Evolutionary links as revealed by the structure of Thermotoga maritima S-adenosylmethionine decarboxylase.
    Toms AV; Kinsland C; McCloskey DE; Pegg AE; Ealick SE
    J Biol Chem; 2004 Aug; 279(32):33837-46. PubMed ID: 15150268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexes of Thermotoga maritimaS-adenosylmethionine decarboxylase provide insights into substrate specificity.
    Bale S; Baba K; McCloskey DE; Pegg AE; Ealick SE
    Acta Crystallogr D Biol Crystallogr; 2010 Feb; 66(Pt 2):181-9. PubMed ID: 20124698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing of mammalian and plant S-adenosylmethionine decarboxylase proenzymes.
    Xiong H; Stanley BA; Tekwani BL; Pegg AE
    J Biol Chem; 1997 Nov; 272(45):28342-8. PubMed ID: 9353291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural biology of S-adenosylmethionine decarboxylase.
    Bale S; Ealick SE
    Amino Acids; 2010 Feb; 38(2):451-60. PubMed ID: 19997761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of human S-adenosylmethionine decarboxylase proenzyme processing as revealed by the structure of the S68A mutant.
    Tolbert WD; Zhang Y; Cottet SE; Bennett EM; Ekstrom JL; Pegg AE; Ealick SE
    Biochemistry; 2003 Mar; 42(8):2386-95. PubMed ID: 12600205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of human S-adenosylmethionine decarboxylase at 2.25 A resolution reveals a novel fold.
    Ekstrom JL; Mathews II; Stanley BA; Pegg AE; Ealick SE
    Structure; 1999 May; 7(5):583-95. PubMed ID: 10378277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monomeric S-adenosylmethionine decarboxylase from plants provides an alternative to putrescine stimulation.
    Bennett EM; Ekstrom JL; Pegg AE; Ealick SE
    Biochemistry; 2002 Dec; 41(49):14509-17. PubMed ID: 12463749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of mammalian S-adenosylmethionine decarboxylase in Escherichia coli. Determination of sites for putrescine activation of activity and processing.
    Stanley BA; Shantz LM; Pegg AE
    J Biol Chem; 1994 Mar; 269(11):7901-7. PubMed ID: 8132508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the inactivation of AdoMetDC K12R mutant.
    Yerlikaya A; Stanley BA
    Protein Pept Lett; 2006; 13(3):313-7. PubMed ID: 16515461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cDNAs for S-adenosyl-L-methionine decarboxylase from Catharanthus roseus, heterologous expression, identification of the proenzyme-processing site, evidence for the presence of both subunits in the active enzyme, and a conserved region in the 5' mRNA leader.
    Schröder G; Schröder J
    Eur J Biochem; 1995 Feb; 228(1):74-8. PubMed ID: 7883014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trypanosoma brucei S-adenosylmethionine decarboxylase N terminus is essential for allosteric activation by the regulatory subunit prozyme.
    Velez N; Brautigam CA; Phillips MA
    J Biol Chem; 2013 Feb; 288(7):5232-40. PubMed ID: 23288847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid residues necessary for putrescine stimulation of human S-adenosylmethionine decarboxylase proenzyme processing and catalytic activity.
    Stanley BA; Pegg AE
    J Biol Chem; 1991 Oct; 266(28):18502-6. PubMed ID: 1917972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neofunctionalization of S-adenosylmethionine decarboxylase into pyruvoyl-dependent L-ornithine and L-arginine decarboxylases is widespread in bacteria and archaea.
    Li B; Liang J; Phillips MA; Michael AJ
    J Biol Chem; 2023 Aug; 299(8):105005. PubMed ID: 37399976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a human S-adenosylmethionine decarboxylase self-processing ester intermediate and mechanism of putrescine stimulation of processing as revealed by the H243A mutant.
    Ekstrom JL; Tolbert WD; Xiong H; Pegg AE; Ealick SE
    Biochemistry; 2001 Aug; 40(32):9495-504. PubMed ID: 11583148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel properties of malarial S-adenosylmethionine decarboxylase as revealed by structural modelling.
    Wells GA; Birkholtz LM; Joubert F; Walter RD; Louw AI
    J Mol Graph Model; 2006 Jan; 24(4):307-18. PubMed ID: 16257247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trypanosoma cruzi has not lost its S-adenosylmethionine decarboxylase: characterization of the gene and the encoded enzyme.
    Persson K; Aslund L; Grahn B; Hanke J; Heby O
    Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):527-37. PubMed ID: 9677309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structural basis for substrate specificity and inhibition of human S-adenosylmethionine decarboxylase.
    Tolbert WD; Ekstrom JL; Mathews II; Secrist JA; Kapoor P; Pegg AE; Ealick SE
    Biochemistry; 2001 Aug; 40(32):9484-94. PubMed ID: 11583147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and expression of the S-adenosylmethionine decarboxylase gene of Neurospora crassa and processing of its product.
    Hoyt MA; Williams-Abbott LJ; Pitkin JW; Davis RH
    Mol Gen Genet; 2000 May; 263(4):664-73. PubMed ID: 10852489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions.
    Birkholtz LM; Wrenger C; Joubert F; Wells GA; Walter RD; Louw AI
    Biochem J; 2004 Jan; 377(Pt 2):439-48. PubMed ID: 12974675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of allosteric regulation of Trypanosoma cruzi S-adenosylmethionine decarboxylase.
    Beswick TC; Willert EK; Phillips MA
    Biochemistry; 2006 Jun; 45(25):7797-807. PubMed ID: 16784231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.