These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 15150271)

  • 21. Loss of tuberous sclerosis complex 1 (Tsc1) expression results in increased Rheb/S6K pathway signaling important for astrocyte cell size regulation.
    Uhlmann EJ; Li W; Scheidenhelm DK; Gau CL; Tamanoi F; Gutmann DH
    Glia; 2004 Aug; 47(2):180-8. PubMed ID: 15185396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rheb binds and regulates the mTOR kinase.
    Long X; Lin Y; Ortiz-Vega S; Yonezawa K; Avruch J
    Curr Biol; 2005 Apr; 15(8):702-13. PubMed ID: 15854902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct effects of single amino-acid changes to tuberin on the function of the tuberin-hamartin complex.
    Nellist M; Sancak O; Goedbloed MA; Rohe C; van Netten D; Mayer K; Tucker-Williams A; van den Ouweland AM; Halley DJ
    Eur J Hum Genet; 2005 Jan; 13(1):59-68. PubMed ID: 15483652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis.
    Kwiatkowski DJ
    Cancer Biol Ther; 2003; 2(5):471-6. PubMed ID: 14614311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural basis for the unique biological function of small GTPase RHEB.
    Yu Y; Li S; Xu X; Li Y; Guan K; Arnold E; Ding J
    J Biol Chem; 2005 Apr; 280(17):17093-100. PubMed ID: 15728574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular mechanisms through which amino acids mediate signaling through the mammalian target of rapamycin.
    Kimball SR; Jefferson LS
    Curr Opin Clin Nutr Metab Care; 2004 Jan; 7(1):39-44. PubMed ID: 15090902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of the Tuberous Sclerosis Complex 2 (TSC2) N Terminus Provides Insight into Complex Assembly and Tuberous Sclerosis Pathogenesis.
    Zech R; Kiontke S; Mueller U; Oeckinghaus A; Kümmel D
    J Biol Chem; 2016 Sep; 291(38):20008-20. PubMed ID: 27493206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth.
    Huang J; Manning BD
    Biochem J; 2008 Jun; 412(2):179-90. PubMed ID: 18466115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phospholipase D1 is an effector of Rheb in the mTOR pathway.
    Sun Y; Fang Y; Yoon MS; Zhang C; Roccio M; Zwartkruis FJ; Armstrong M; Brown HA; Chen J
    Proc Natl Acad Sci U S A; 2008 Jun; 105(24):8286-91. PubMed ID: 18550814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent.
    Jaeschke A; Hartkamp J; Saitoh M; Roworth W; Nobukuni T; Hodges A; Sampson J; Thomas G; Lamb R
    J Cell Biol; 2002 Oct; 159(2):217-24. PubMed ID: 12403809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Receptor-recognized α₂-macroglobulin binds to cell surface-associated GRP78 and activates mTORC1 and mTORC2 signaling in prostate cancer cells.
    Misra UK; Pizzo SV
    PLoS One; 2012; 7(12):e51735. PubMed ID: 23272152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of tuberin in cellular differentiation: are B-Raf and MAPK involved?
    Karbowniczek M; Henske EP
    Ann N Y Acad Sci; 2005 Nov; 1059():168-73. PubMed ID: 16382052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GLUT1 enhances mTOR activity independently of TSC2 and AMPK.
    Buller CL; Heilig CW; Brosius FC
    Am J Physiol Renal Physiol; 2011 Sep; 301(3):F588-96. PubMed ID: 21613414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuberous sclerosis-2 tumor suppressor modulates ERK and B-Raf activity in transformed renal epithelial cells.
    Yoon HS; Ramachandiran S; Chacko MA; Monks TJ; Lau SS
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F417-24. PubMed ID: 14612383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the tuberous sclerosis complex proteins in brain lesions.
    Han S; Santos TM; Puga A; Roy J; Thiele EA; McCollin M; Stemmer-Rachamimov A; Ramesh V
    Cancer Res; 2004 Feb; 64(3):812-6. PubMed ID: 14871804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins.
    Zhang Y; Gao X; Saucedo LJ; Ru B; Edgar BA; Pan D
    Nat Cell Biol; 2003 Jun; 5(6):578-81. PubMed ID: 12771962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells.
    Im E; von Lintig FC; Chen J; Zhuang S; Qui W; Chowdhury S; Worley PF; Boss GR; Pilz RB
    Oncogene; 2002 Sep; 21(41):6356-65. PubMed ID: 12214276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity.
    Yang Q; Inoki K; Kim E; Guan KL
    Proc Natl Acad Sci U S A; 2006 May; 103(18):6811-6. PubMed ID: 16627617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical role of T-loop and H-motif phosphorylation in the regulation of S6 kinase 1 by the tuberous sclerosis complex.
    Shah OJ; Hunter T
    J Biol Chem; 2004 May; 279(20):20816-23. PubMed ID: 14993219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuberous sclerosis-2 (TSC2) regulates the stability of death-associated protein kinase-1 (DAPK) through a lysosome-dependent degradation pathway.
    Lin Y; Henderson P; Pettersson S; Satsangi J; Hupp T; Stevens C
    FEBS J; 2011 Jan; 278(2):354-70. PubMed ID: 21134130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.