BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 15150274)

  • 1. Targeting of the dual oxidase 2 N-terminal region to the plasma membrane.
    Morand S; Agnandji D; Noel-Hudson MS; Nicolas V; Buisson S; Macon-Lemaitre L; Gnidehou S; Kaniewski J; Ohayon R; Virion A; Dupuy C
    J Biol Chem; 2004 Jul; 279(29):30244-51. PubMed ID: 15150274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-glycosylation of α
    Janezic EM; Lauer SM; Williams RG; Chungyoun M; Lee KS; Navaluna E; Lau HT; Ong SE; Hague C
    Sci Rep; 2020 Apr; 10(1):7209. PubMed ID: 32350295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination between alternate membrane protein topologies in living cells using GFP/YFP tagging and pH exchange.
    Domingo B; Gasset M; Durán-Prado M; Castaño JP; Serrano A; Fischer T; Llopis J
    Cell Mol Life Sci; 2010 Oct; 67(19):3345-54. PubMed ID: 20454916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity.
    Ameziane-El-Hassani R; Morand S; Boucher JL; Frapart YM; Apostolou D; Agnandji D; Gnidehou S; Ohayon R; Noël-Hudson MS; Francon J; Lalaoui K; Virion A; Dupuy C
    J Biol Chem; 2005 Aug; 280(34):30046-54. PubMed ID: 15972824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive molecular analysis of bovine coronavirus strains isolated from Brazil and comparison of a wild-type and cell culture-adapted strain associated with respiratory disease.
    de Mello JL; Lorencena D; Delai RR; Kunz AF; Possatti F; Alfieri AA; Takiuchi E
    Braz J Microbiol; 2024 Jun; 55(2):1967-1977. PubMed ID: 38381350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CMPK2 restricts Zika virus replication by inhibiting viral translation.
    Pawlak JB; Hsu JC; Xia H; Han P; Suh HW; Grove TL; Morrison J; Shi PY; Cresswell P; Laurent-Rolle M
    PLoS Pathog; 2023 Apr; 19(4):e1011286. PubMed ID: 37075076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Intestinal Redox System and Its Significance in Chemotherapy-Induced Intestinal Mucositis.
    Yu QQ; Zhang H; Guo Y; Han B; Jiang P
    Oxid Med Cell Longev; 2022; 2022():7255497. PubMed ID: 35585883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DUOX1 in mammalian disease pathophysiology.
    Ashtiwi NM; Sarr D; Rada B
    J Mol Med (Berl); 2021 Jun; 99(6):743-754. PubMed ID: 33704512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial actions of dual oxidases and lactoperoxidase.
    Sarr D; Tóth E; Gingerich A; Rada B
    J Microbiol; 2018 Jun; 56(6):373-386. PubMed ID: 29858825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual oxidase: a novel therapeutic target in allergic disease.
    van der Vliet A; Danyal K; Heppner DE
    Br J Pharmacol; 2018 May; 175(9):1401-1418. PubMed ID: 29405261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic disorders coupled to ROS deficiency.
    O'Neill S; Brault J; Stasia MJ; Knaus UG
    Redox Biol; 2015 Dec; 6():135-156. PubMed ID: 26210446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When an Intramolecular Disulfide Bridge Governs the Interaction of DUOX2 with Its Partner DUOXA2.
    Carré A; Louzada RA; Fortunato RS; Ameziane-El-Hassani R; Morand S; Ogryzko V; de Carvalho DP; Grasberger H; Leto TL; Dupuy C
    Antioxid Redox Signal; 2015 Sep; 23(9):724-33. PubMed ID: 25761904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative in silico characterization of functional and physicochemical properties of 3FTx (three finger toxin) proteins from four venomous snakes.
    Roly ZY; Islam MM; Reza MA
    Bioinformation; 2014; 10(5):281-7. PubMed ID: 24966535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypothyroidism-associated missense mutation impairs NADPH oxidase activity and intracellular trafficking of Duox2.
    Donkó Á; Morand S; Korzeniowska A; Boudreau HE; Zana M; Hunyady L; Geiszt M; Leto TL
    Free Radic Biol Med; 2014 Aug; 73():190-200. PubMed ID: 24853759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nox NADPH oxidases and the endoplasmic reticulum.
    Laurindo FR; Araujo TL; Abrahão TB
    Antioxid Redox Signal; 2014 Jun; 20(17):2755-75. PubMed ID: 24386930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved cysteine residues provide a protein-protein interaction surface in dual oxidase (DUOX) proteins.
    Meitzler JL; Hinde S; Bánfi B; Nauseef WM; Ortiz de Montellano PR
    J Biol Chem; 2013 Mar; 288(10):7147-57. PubMed ID: 23362256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetraspanin is required for generation of reactive oxygen species by the dual oxidase system in Caenorhabditis elegans.
    Moribe H; Konakawa R; Koga D; Ushiki T; Nakamura K; Mekada E
    PLoS Genet; 2012 Sep; 8(9):e1002957. PubMed ID: 23028364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural stability and heme binding potential of the truncated human dual oxidase 2 (DUOX2) peroxidase domain.
    Meitzler JL; Ortiz de Montellano PR
    Arch Biochem Biophys; 2011 Aug; 512(2):197-203. PubMed ID: 21704604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases.
    Leto TL; Morand S; Hurt D; Ueyama T
    Antioxid Redox Signal; 2009 Oct; 11(10):2607-19. PubMed ID: 19438290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH oxidases in lung biology and pathology: host defense enzymes, and more.
    van der Vliet A
    Free Radic Biol Med; 2008 Mar; 44(6):938-55. PubMed ID: 18164271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.