BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 15150409)

  • 1. Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III.
    Wu H; Henras A; Chanfreau G; Feigon J
    Proc Natl Acad Sci U S A; 2004 Jun; 101(22):8307-12. PubMed ID: 15150409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of an AAGU tetraloop and its contribution to substrate selection by yeast RNase III.
    Gaudin C; Ghazal G; Yoshizawa S; Elela SA; Fourmy D
    J Mol Biol; 2006 Oct; 363(2):322-31. PubMed ID: 16979185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs.
    Wang Z; Hartman E; Roy K; Chanfreau G; Feigon J
    Structure; 2011 Jul; 19(7):999-1010. PubMed ID: 21742266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III.
    Henras AK; Sam M; Hiley SL; Wu H; Hughes TR; Feigon J; Chanfreau GF
    RNA; 2005 Aug; 11(8):1225-37. PubMed ID: 15987808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III.
    Leulliot N; Quevillon-Cheruel S; Graille M; van Tilbeurgh H; Leeper TC; Godin KS; Edwards TE; Sigurdsson ST; Rozenkrants N; Nagel RJ; Ares M; Varani G
    EMBO J; 2004 Jul; 23(13):2468-77. PubMed ID: 15192703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition.
    Sam M; Henras AK; Chanfreau G
    Biochemistry; 2005 Mar; 44(11):4181-7. PubMed ID: 15766245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel family of RNA tetraloop structure forms the recognition site for Saccharomyces cerevisiae RNase III.
    Wu H; Yang PK; Butcher SE; Kang S; Chanfreau G; Feigon J
    EMBO J; 2001 Dec; 20(24):7240-9. PubMed ID: 11743000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites.
    Hartman E; Wang Z; Zhang Q; Roy K; Chanfreau G; Feigon J
    J Mol Biol; 2013 Feb; 425(3):546-62. PubMed ID: 23201338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the reactivity determinants of a novel hairpin substrate of yeast RNase III.
    Ghazal G; Elela SA
    J Mol Biol; 2006 Oct; 363(2):332-44. PubMed ID: 16962133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of Rnt1p: An alternative to RNAi for targeted RNA degradation.
    Abou Elela S; Ji X
    Wiley Interdiscip Rev RNA; 2019 May; 10(3):e1521. PubMed ID: 30548404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular requirements for duplex recognition and cleavage by eukaryotic RNase III: discovery of an RNA-dependent DNA cleavage activity of yeast Rnt1p.
    Lamontagne B; Hannoush RN; Damha MJ; Abou Elela S
    J Mol Biol; 2004 Apr; 338(2):401-18. PubMed ID: 15066440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence dependence of substrate recognition and cleavage by yeast RNase III.
    Lamontagne B; Ghazal G; Lebars I; Yoshizawa S; Fourmy D; Elela SA
    J Mol Biol; 2003 Apr; 327(5):985-1000. PubMed ID: 12662924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of conserved AGNN tetraloops: insights into Rnt1p RNA processing.
    Lebars I; Lamontagne B; Yoshizawa S; Aboul-Elela S; Fourmy D
    EMBO J; 2001 Dec; 20(24):7250-8. PubMed ID: 11743001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate recognition by a eukaryotic RNase III: the double-stranded RNA-binding domain of Rnt1p selectively binds RNA containing a 5'-AGNN-3' tetraloop.
    Nagel R; Ares M
    RNA; 2000 Aug; 6(8):1142-56. PubMed ID: 10943893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III.
    Chanfreau G; Buckle M; Jacquier A
    Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3142-7. PubMed ID: 10716739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a eukaryotic RNase III postcleavage complex reveals a double-ruler mechanism for substrate selection.
    Liang YH; Lavoie M; Comeau MA; Abou Elela S; Ji X
    Mol Cell; 2014 May; 54(3):431-44. PubMed ID: 24703949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation of RNase III processing pathways and specificity in hemiascomycetes.
    Chanfreau G
    Eukaryot Cell; 2003 Oct; 2(5):901-9. PubMed ID: 14555472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Functional Cycle of Rnt1p: Five Consecutive Steps of Double-Stranded RNA Processing by a Eukaryotic RNase III.
    Song H; Fang X; Jin L; Shaw GX; Wang YX; Ji X
    Structure; 2017 Feb; 25(2):353-363. PubMed ID: 28111020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition modes of RNA tetraloops and tetraloop-like motifs by RNA-binding proteins.
    Thapar R; Denmon AP; Nikonowicz EP
    Wiley Interdiscip Rev RNA; 2014; 5(1):49-67. PubMed ID: 24124096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA.
    Ryter JM; Schultz SC
    EMBO J; 1998 Dec; 17(24):7505-13. PubMed ID: 9857205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.