These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 15150656)
41. Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3-CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. Broetto F; Monteiro Duarte H; Lüttge U J Plant Physiol; 2007 Jul; 164(7):904-12. PubMed ID: 16781797 [TBL] [Abstract][Full Text] [Related]
42. Inhibition of non-photochemical quenching increases functional absorption cross-section of photosystem II as excitation from closed reaction centres is transferred to open centres, facilitating earlier light saturation of photosynthetic electron transport. Osmond CB; Chow WS; Robinson SA Funct Plant Biol; 2022 May; 49(6):463-482. PubMed ID: 33705686 [TBL] [Abstract][Full Text] [Related]
43. Allocation of Absorbed Light Energy in Photosystem II in NPQ Mutants of Arabidopsis. Ikeuchi M; Sato F; Endo T Plant Cell Physiol; 2016 Jul; 57(7):1484-1494. PubMed ID: 27076397 [TBL] [Abstract][Full Text] [Related]
44. Photosynthetic plasticity of two rain forest shrubs across natural gap transects. Chazdon RL Oecologia; 1992 Dec; 92(4):586-595. PubMed ID: 28313232 [TBL] [Abstract][Full Text] [Related]
45. High-susceptibility of photosynthesis to photoinhibition in the tropical plant Ficus microcarpa L. f. cv. Golden Leaves. Takahashi S; Tamashiro A; Sakihama Y; Yamamoto Y; Kawamitsu Y; Yamasaki H BMC Plant Biol; 2002 Apr; 2():2. PubMed ID: 11926968 [TBL] [Abstract][Full Text] [Related]
46. Summer drought impedes beech seedling performance more in a sub-Mediterranean forest understory than in small gaps. Robson TM; Rodríguez-Calcerrada J; Sánchez-Gómez D; Aranda I Tree Physiol; 2009 Feb; 29(2):249-59. PubMed ID: 19203950 [TBL] [Abstract][Full Text] [Related]
47. Non-photochemical loss in PSII in high- and low-light-grown leaves of Vicia faba quantified by several fluorescence parameters including L(NP), F0/F'm, a novel parameter. Stefanov D; Terashima I Physiol Plant; 2008 Jun; 133(2):327-38. PubMed ID: 18346081 [TBL] [Abstract][Full Text] [Related]
48. Interactions and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology. Pollastrini M; Holland V; Brüggemann W; Koricheva J; Jussila I; Scherer-Lorenzen M; Berger S; Bussotti F Plant Biol (Stuttg); 2014 Mar; 16(2):323-31. PubMed ID: 23926925 [TBL] [Abstract][Full Text] [Related]
49. Temperature dependency of bark photosynthesis in beech (Fagus sylvatica L.) and birch (Betula pendula Roth.) trees. Wittmann C; Pfanz H J Exp Bot; 2007; 58(15-16):4293-306. PubMed ID: 18182432 [TBL] [Abstract][Full Text] [Related]
50. [Effects of NO3- stress on photosynthetic rate, photochemical efficiency of PS II and light energy allocation in cucumber seedling leaves]. Su XR; Wang XF; Yang FJ; Wei M Ying Yong Sheng Tai Xue Bao; 2007 Jul; 18(7):1441-6. PubMed ID: 17886632 [TBL] [Abstract][Full Text] [Related]
51. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China]. Shi SB; Chen WJ; Shi R; Li M; Zhang HG; Sun YN Ying Yong Sheng Tai Xue Bao; 2014 Sep; 25(9):2613-22. PubMed ID: 25757313 [TBL] [Abstract][Full Text] [Related]
52. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Sharma DK; Andersen SB; Ottosen CO; Rosenqvist E Physiol Plant; 2015 Feb; 153(2):284-98. PubMed ID: 24962705 [TBL] [Abstract][Full Text] [Related]
53. Thermostability and photostability of photosystem II of the resurrection plant Haberlea rhodopensis studied by chlorophyll fluorescence. Georgieva K; Maslenkova L Z Naturforsch C J Biosci; 2006; 61(3-4):234-40. PubMed ID: 16729582 [TBL] [Abstract][Full Text] [Related]
54. Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Sarvikas P; Hakala M; Pätsikkä E; Tyystjärvi T; Tyystjärvi E Plant Cell Physiol; 2006 Mar; 47(3):391-400. PubMed ID: 16415063 [TBL] [Abstract][Full Text] [Related]
55. Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient. Kitao M; Kitaoka S; Komatsu M; Utsugi H; Tobita H; Koike T; Maruyama Y Physiol Plant; 2012 Oct; 146(2):192-204. PubMed ID: 22394101 [TBL] [Abstract][Full Text] [Related]
56. Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling. Ding F; Wang M; Liu B; Zhang S Front Plant Sci; 2017; 8():244. PubMed ID: 28265283 [TBL] [Abstract][Full Text] [Related]
57. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP; Ruban AV Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315 [TBL] [Abstract][Full Text] [Related]
58. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding. Mielke MS; Schaffer B Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194 [TBL] [Abstract][Full Text] [Related]
59. Physiological functions of PsbS-dependent and PsbS-independent NPQ under naturally fluctuating light conditions. Ikeuchi M; Uebayashi N; Sato F; Endo T Plant Cell Physiol; 2014 Jul; 55(7):1286-95. PubMed ID: 24850835 [TBL] [Abstract][Full Text] [Related]
60. Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf. Hogewoning SW; Harbinson J J Exp Bot; 2007; 58(3):453-63. PubMed ID: 17132711 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]