These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 15150719)

  • 1. Kinematic and dynamic performance of prosthetic knee joint using six-bar mechanism.
    Jin D; Zhang R; Dimo HO; Wang R; Zhang J
    J Rehabil Res Dev; 2003; 40(1):39-48. PubMed ID: 15150719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.
    Sun Y; Ge W; Zheng J; Dong D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1031-8. PubMed ID: 25675463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of prosthetic knee and ankle mechanisms to swing-phase foot clearance.
    Sensinger JW; Intawachirarat N; Gard SA
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):74-80. PubMed ID: 23193323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees.
    Segal AD; Orendurff MS; Klute GK; McDowell ML; Pecoraro JA; Shofer J; Czerniecki JM
    J Rehabil Res Dev; 2006; 43(7):857-70. PubMed ID: 17436172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of dynamic models of the Mauch prosthetic knee for prospective gait simulation.
    Chien MS; Erdemir A; van den Bogert AJ; Smith WA
    J Biomech; 2014 Sep; 47(12):3178-84. PubMed ID: 25059894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of a new polycentric above-knee prosthesis with a pneumatic swing phase control.
    Patil KM; Chakraborty JK
    J Biomech; 1991; 24(3-4):223-33. PubMed ID: 2055911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target of physiological gait: Realization of speed adaptive control for a prosthetic knee during swing flexion.
    Cao W; Yu H; Zhao W; Li J; Wei X
    Technol Health Care; 2018; 26(1):133-144. PubMed ID: 29060946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for performance comparison of polycentric knees and its application to the design of a knee for developing countries.
    Anand TS; Sujatha S
    Prosthet Orthot Int; 2017 Aug; 41(4):402-411. PubMed ID: 27435740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conventional 4-bar linkage knee mechanisms: a strength-weakness analysis.
    de Vries J
    J Rehabil Res Dev; 1995 Feb; 32(1):36-42. PubMed ID: 7760266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal-spatial parameters of gait in transfemoral amputees: Comparison of bionic and mechanically passive knee joints.
    Uchytil J; Jandacka D; Zahradnik D; Farana R; Janura M
    Prosthet Orthot Int; 2014 Jun; 38(3):199-203. PubMed ID: 23824546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics.
    Narang YS; Arelekatti VN; Winter AG
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):754-63. PubMed ID: 26186794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Speed-Adaptive Control of a Powered Geared Five-Bar Prosthetic Knee Using BP Neural Network Gait Recognition.
    Sun Y; Huang R; Zheng J; Dong D; Chen X; Bai L; Ge W
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31717856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of a user-adaptive prosthetic knee across varying walking speeds: A randomized cross-over trial.
    Prinsen EC; Nederhand MJ; Sveinsdóttir HS; Prins MR; van der Meer F; Koopman HFJM; Rietman JS
    Gait Posture; 2017 Jan; 51():254-260. PubMed ID: 27838569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptative control of above knee electro-hydraulic prosthesis.
    Wang TK; Ju MS; Tsuei YG
    J Biomech Eng; 1992 Aug; 114(3):421-4. PubMed ID: 1522738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knee Motion Generation Method for Transfemoral Prosthesis Based on Kinematic Synergy and Inertial Motion.
    Sano H; Wada T
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2387-2397. PubMed ID: 28981420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.