These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 15151279)
1. Evaluation of Trichoderma spp. for biocontrol of tomato sudden caused by Pythium aphanidermatum following flooding in tropical hot season. Le HT; Black LL; Sikora RA Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):463-74. PubMed ID: 15151279 [TBL] [Abstract][Full Text] [Related]
2. Suppression of Pythium spp. by Trichoderma spp. during germination of tomato seeds in soilless growing media. Aerts R; De Schutter B; Rombouts L Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):343-51. PubMed ID: 12701442 [TBL] [Abstract][Full Text] [Related]
3. Mycorrhizal fungi and Trichoderma harzianum as biocontrol agents for suppression of Rhizoctonia solani damping-off disease of tomato. Amer MA; Abou-El-Seoud II Commun Agric Appl Biol Sci; 2008; 73(2):217-32. PubMed ID: 19226759 [TBL] [Abstract][Full Text] [Related]
4. Talaromyces variabilis interferes with Pythium aphanidermatum growth and suppresses Pythium-induced damping-off of cucumbers and tomatoes. Halo BA; Al-Yahyai RA; Maharachchikumbura SSN; Al-Sadi AM Sci Rep; 2019 Aug; 9(1):11255. PubMed ID: 31375723 [TBL] [Abstract][Full Text] [Related]
5. Antagonistic effects of Trichoderma harzianum on Pythium aphanidermatum causing the damping-off disease of tobacco in Nigeria. Fajola AO; Alasoadura SO Mycopathologia; 1975 Dec; 57(1):47-52. PubMed ID: 1239662 [TBL] [Abstract][Full Text] [Related]
6. Use of Trichoderma harzianum and Trichoderma viride for the biological control of Meloidogyne incognita on tomato. Dababat AA; Sikora RA; Hauschild R Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):953-61. PubMed ID: 17390844 [TBL] [Abstract][Full Text] [Related]
7. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Mastouri F; Björkman T; Harman GE Phytopathology; 2010 Nov; 100(11):1213-21. PubMed ID: 20649416 [TBL] [Abstract][Full Text] [Related]
8. Biological control of Botrytis gray mould on tomato cultivated in greenhouse. Fiume F; Fiume G Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):897-908. PubMed ID: 17390837 [TBL] [Abstract][Full Text] [Related]
9. Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Siddiqui IA; Shaukat SS Lett Appl Microbiol; 2004; 38(2):169-75. PubMed ID: 14746551 [TBL] [Abstract][Full Text] [Related]
10. Biological control of corky root in tomato. Fiume G; Fiume F Commun Agric Appl Biol Sci; 2008; 73(2):233-48. PubMed ID: 19226760 [TBL] [Abstract][Full Text] [Related]
11. Biocontrol and growth-promoting effect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil. Yu Z; Wang Z; Zhang Y; Wang Y; Liu Z Microbiol Res; 2021 Jan; 242():126596. PubMed ID: 33007636 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterization of plant growth-promoting Trichoderma from Saudi Arabia. Alwadai AS; Al Wahibi MS; Alsayed MF; Alshaikh NA; Perveen K; Elsayim R Sci Rep; 2024 Oct; 14(1):23236. PubMed ID: 39369094 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization of plant growth promoting rhizobacteria that enhance peroxidase and phenylalanine ammonia-lyase activities in chile (Capsicum annuum L.) and tomato (Lycopersicon esculentum Mill.). Sharma A; Pathak A; Sahgal M; Meyer JM; Wray V; Johri BN Arch Microbiol; 2007 Nov; 188(5):483-94. PubMed ID: 17593351 [TBL] [Abstract][Full Text] [Related]
14. Biocontrol Potential of Trichoderma Ghanense and Trichoderma Citrinoviride toward Al-Shuaibi BK; Kazerooni EA; Al-Maqbali D; Al-Kharousi M; Al-Yahya'ei MN; Hussain S; Velazhahan R; Al-Sadi AM J Fungi (Basel); 2024 Apr; 10(4):. PubMed ID: 38667955 [No Abstract] [Full Text] [Related]
15. Antagonistic potential of Gliocladium virens and Trichoderma longibrachiatum to phytopathogenic fungi. Sreenivasaprasad S; Manibhushanrao K Mycopathologia; 1990 Jan; 109(1):19-26. PubMed ID: 2325746 [TBL] [Abstract][Full Text] [Related]
16. Integration of soil application and seed treatment formulations of Trichoderma species for management of wet root rot of mungbean caused by Rhizoctonia solani. Dubey SC; Bhavani R; Singh B Pest Manag Sci; 2011 Sep; 67(9):1163-8. PubMed ID: 21480467 [TBL] [Abstract][Full Text] [Related]
17. [Evaluation of Trichoderma spp. as antagonist of Rhizoctonia solani in vitro and as biocontrol of greenhouse tomato plants]. Durman S; Menendez A; Godeas A Rev Argent Microbiol; 1999; 31(1):13-8. PubMed ID: 10327455 [TBL] [Abstract][Full Text] [Related]
18. Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. Morán-Diez ME; Trushina N; Lamdan NL; Rosenfelder L; Mukherjee PK; Kenerley CM; Horwitz BA BMC Genomics; 2015 Jan; 16(1):8. PubMed ID: 25608961 [TBL] [Abstract][Full Text] [Related]
19. Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. Chacón MR; Rodríguez-Galán O; Benítez T; Sousa S; Rey M; Llobell A; Delgado-Jarana J Int Microbiol; 2007 Mar; 10(1):19-27. PubMed ID: 17407057 [TBL] [Abstract][Full Text] [Related]
20. Rhizosphere Pseudomonas sp. strains reduce occurrence of pre- and post-emergence damping-off in chile and tomato in Central Himalayan region. Sharma A; Wray V; Johri BN Arch Microbiol; 2007 Apr; 187(4):321-35. PubMed ID: 17160408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]