These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15151280)

  • 1. Efficacy of salts against fungal diseases in glasshouse crops.
    Dik AJ; van der Gaag DJ; van Slooten MA
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):475-85. PubMed ID: 15151280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the users value of salts against apple scab and powdery mildew for the integrated fruit production.
    Creemers P; Van Laer S; Van Mechelen A; Vorstermans B; Hauke K
    Commun Agric Appl Biol Sci; 2007; 72(4):917-23. PubMed ID: 18396829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica.
    Zheng Z; Nonomura T; Appiano M; Pavan S; Matsuda Y; Toyoda H; Wolters AM; Visser RG; Bai Y
    PLoS One; 2013; 8(7):e70723. PubMed ID: 23923019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic salts for suppressing powdery mildew in cucurbits--a worldwide survey.
    Deliopoulos T; Kettlewell PS; Hare MC
    Commun Agric Appl Biol Sci; 2008; 73(2):51-6. PubMed ID: 19226741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Short-Read Genome Assembly Resource for
    Kusch S; Németh MZ; Vaghefi N; Ibrahim HMM; Panstruga R; Kiss L
    Mol Plant Microbe Interact; 2020 Jun; 33(6):782-786. PubMed ID: 32150511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecological basis of the interaction between Pseudozyma flocculosa and powdery mildew fungi.
    Hammami W; Castro CQ; Rémus-Borel W; Labbé C; Bélanger RR
    Appl Environ Microbiol; 2011 Feb; 77(3):926-33. PubMed ID: 21115715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and quantification of Leveillula taurica growth in pepper leaves.
    Zheng Z; Nonomura T; Bóka K; Matsuda Y; Visser RG; Toyoda H; Kiss L; Bai Y
    Phytopathology; 2013 Jun; 103(6):623-32. PubMed ID: 23324047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent.
    Elad Y; David DR; Harel YM; Borenshtein M; Kalifa HB; Silber A; Graber ER
    Phytopathology; 2010 Sep; 100(9):913-21. PubMed ID: 20701489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The modifications of cell wall composition and water status of cucumber leaves induced by powdery mildew and manganese nutrition.
    Eskandari S; Sharifnabi B
    Plant Physiol Biochem; 2019 Dec; 145():132-141. PubMed ID: 31683200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of potassium bicarbonate (Armicarb) on the control of powdery mildew (Sphaerotheca mors-uvae) of gooseberry (Ribes uva-crispa).
    Wenneker M; Kanne J
    Commun Agric Appl Biol Sci; 2010; 75(4):563-8. PubMed ID: 21534463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan (biochikol 020 PC) in the control of some ornamental foliage diseases.
    Wojdyła AT
    Commun Agric Appl Biol Sci; 2004; 69(4):705-15. PubMed ID: 15756862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) as a potential mycoparasite on Sphaerotheca fuliginea (Ascomycotina: Erysiphales).
    Kavková M; Curn V
    Mycopathologia; 2005 Jan; 159(1):53-63. PubMed ID: 15750732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QTLs for resistance to powdery mildew in pepper under natural and artificial infections.
    Lefebvre V; Daubèze AM; Rouppe van der Voort J; Peleman J; Bardin M; Palloix A
    Theor Appl Genet; 2003 Aug; 107(4):661-6. PubMed ID: 12819909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymorphic change of appressoria by the tomato powdery mildew Oidium neolycopersici on host tomato leaves reflects multiple unsuccessful penetration attempts.
    Nonomura T; Nishitomi A; Matsuda Y; Soma C; Xu L; Kakutani K; Takikawa Y; Toyoda H
    Fungal Biol; 2010; 114(11-12):917-28. PubMed ID: 21036335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective and curative effects of foliar-spray Fenton solutions against cucumber (Cucumis sativus, L.) powdery mildew.
    Sakugawa H; Hasan N; Oguntimehin I; Belal E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(12):1909-18. PubMed ID: 22755538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the systemic activity of simeconazole in comparison with that of other DMI fungicides.
    Tsuda M; Itoh H; Kato S
    Pest Manag Sci; 2004 Sep; 60(9):875-80. PubMed ID: 15382501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycyrrhiza glabra extract protects plants against important phytopathogenic fungi.
    Schuster C; Konstantinidou-Doltsinis S; Schmitt A
    Commun Agric Appl Biol Sci; 2010; 75(4):531-40. PubMed ID: 21534460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological evaluation of neopeptins isolated from a Streptomyces strain.
    Kim YS; Kim HM; Chang C; Hwang IC; Oh H; Ahn JS; Kim KD; Hwang BK; Kim BS
    Pest Manag Sci; 2007 Dec; 63(12):1208-14. PubMed ID: 17912683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection.
    Zhang P; Zhu Y; Zhou S
    BMC Plant Biol; 2021 Jan; 21(1):24. PubMed ID: 33413112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grapefruit extract activity in the control of rose powdery mildew and black spot.
    Wojdyła AT
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):167-77. PubMed ID: 12425034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.