BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15151983)

  • 1. Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled.
    Weitzel HE; Illies MR; Byrum CA; Xu R; Wikramanayake AH; Ettensohn CA
    Development; 2004 Jun; 131(12):2947-56. PubMed ID: 15151983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development.
    Ettensohn CA
    Sci STKE; 2006 Nov; 2006(361):pe48. PubMed ID: 17106077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling.
    Peng CJ; Wikramanayake AH
    PLoS One; 2013; 8(11):e80693. PubMed ID: 24236196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of dishevelled localization and function in the early sea urchin embryo.
    Leonard JD; Ettensohn CA
    Dev Biol; 2007 Jun; 306(1):50-65. PubMed ID: 17433285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
    Wikramanayake AH; Huang L; Klein WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9343-8. PubMed ID: 9689082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation.
    Miller JR; Rowning BA; Larabell CA; Yang-Snyder JA; Bates RL; Moon RT
    J Cell Biol; 1999 Jul; 146(2):427-37. PubMed ID: 10427095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled.
    Lee PN; Kumburegama S; Marlow HQ; Martindale MQ; Wikramanayake AH
    Dev Biol; 2007 Oct; 310(1):169-86. PubMed ID: 17716645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Animal-vegetal axis patterning mechanisms in the early sea urchin embryo.
    Angerer LM; Angerer RC
    Dev Biol; 2000 Feb; 218(1):1-12. PubMed ID: 10644406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover.
    Angerer LM; Newman LA; Angerer RC
    Development; 2005 Mar; 132(5):999-1008. PubMed ID: 15689377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation.
    Byrum CA; Xu R; Bince JM; McClay DR; Wikramanayake AH
    Dev Dyn; 2009 Jul; 238(7):1649-65. PubMed ID: 19449300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rap2 is required for Wnt/beta-catenin signaling pathway in Xenopus early development.
    Choi SC; Han JK
    EMBO J; 2005 Mar; 24(5):985-96. PubMed ID: 15706349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of antipsychotics on beta-catenin, glycogen synthase kinase-3 and dishevelled in the ventral midbrain of rats.
    Alimohamad H; Sutton L; Mouyal J; Rajakumar N; Rushlow WJ
    J Neurochem; 2005 Oct; 95(2):513-25. PubMed ID: 16144542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients.
    Angerer LM; Angerer RC
    Semin Cell Dev Biol; 1999 Jun; 10(3):327-34. PubMed ID: 10441547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo.
    Emily-Fenouil F; Ghiglione C; Lhomond G; Lepage T; Gache C
    Development; 1998 Jul; 125(13):2489-98. PubMed ID: 9609832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo.
    Range RC; Venuti JM; McClay DR
    Dev Biol; 2005 Mar; 279(1):252-67. PubMed ID: 15708573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins.
    Huang L; Li X; El-Hodiri HM; Dayal S; Wikramanayake AH; Klein WH
    Dev Genes Evol; 2000 Feb; 210(2):73-81. PubMed ID: 10664150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.