These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15151983)

  • 21. The nanoscale organization of the Wnt signaling integrator Dishevelled in the vegetal cortex domain of an egg and early embryo.
    Henson JH; Samasa B; Shuster CB; Wikramanayake AH
    PLoS One; 2021; 16(5):e0248197. PubMed ID: 34038442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wnt6 activates endoderm in the sea urchin gene regulatory network.
    Croce J; Range R; Wu SY; Miranda E; Lhomond G; Peng JC; Lepage T; McClay DR
    Development; 2011 Aug; 138(15):3297-306. PubMed ID: 21750039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bep4 protein is involved in patterning along the animal-vegetal axis in the Paracentrotus lividus embryo.
    Romancino DP; Montana G; Dalmazio S; Di Carlo M
    Dev Biol; 2001 Jun; 234(1):107-19. PubMed ID: 11356023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear accumulation of beta-catenin and transcription of downstream genes are regulated by zygotic Wnt5alpha and maternal Dsh in ascidian embryos.
    Kawai N; Iida Y; Kumano G; Nishida H
    Dev Dyn; 2007 Jun; 236(6):1570-82. PubMed ID: 17474118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos.
    Kenny AP; Oleksyn DW; Newman LA; Angerer RC; Angerer LM
    Dev Biol; 2003 Sep; 261(2):412-25. PubMed ID: 14499650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. LvNotch signaling plays a dual role in regulating the position of the ectoderm-endoderm boundary in the sea urchin embryo.
    Sherwood DR; McClay DR
    Development; 2001 Jun; 128(12):2221-32. PubMed ID: 11493542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
    Flowers VL; Courteau GR; Poustka AJ; Weng W; Venuti JM
    Dev Dyn; 2004 Dec; 231(4):727-40. PubMed ID: 15517584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos.
    Yazaki I; Tsurugaya T; Santella L; Chun JT; Amore G; Kusunoki S; Asada A; Togo T; Akasaka K
    Zygote; 2015 Jun; 23(3):426-46. PubMed ID: 24717667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frodo interacts with Dishevelled to transduce Wnt signals.
    Gloy J; Hikasa H; Sokol SY
    Nat Cell Biol; 2002 May; 4(5):351-7. PubMed ID: 11941372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An early global role for Axin is required for correct patterning of the anterior-posterior axis in the sea urchin embryo.
    Sun H; Peng CJ; Wang L; Feng H; Wikramanayake AH
    Development; 2021 Mar; 148(7):. PubMed ID: 33688076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway.
    Amit S; Hatzubai A; Birman Y; Andersen JS; Ben-Shushan E; Mann M; Ben-Neriah Y; Alkalay I
    Genes Dev; 2002 May; 16(9):1066-76. PubMed ID: 12000790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis.
    Wei Z; Angerer LM; Angerer RC
    Dev Biol; 1997 Jul; 187(1):71-8. PubMed ID: 9224675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polycyclic aromatic hydrocarbons disrupt axial development in sea urchin embryos through a beta-catenin dependent pathway.
    Pillai MC; Vines CA; Wikramanayake AH; Cherr GN
    Toxicology; 2003 Apr; 186(1-2):93-108. PubMed ID: 12604173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser.
    Darras S; Marikawa Y; Elinson RP; Lemaire P
    Development; 1997 Nov; 124(21):4275-86. PubMed ID: 9334276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos.
    Howard EW; Newman LA; Oleksyn DW; Angerer RC; Angerer LM
    Development; 2001 Feb; 128(3):365-75. PubMed ID: 11152635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM
    Dev Cell; 2008 Jan; 14(1):97-107. PubMed ID: 18194656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The expression and distribution of Wnt and Wnt receptor mRNAs during early sea urchin development.
    Stamateris RE; Rafiq K; Ettensohn CA
    Gene Expr Patterns; 2010 Jan; 10(1):60-4. PubMed ID: 19853669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wnt signaling and cancer.
    Polakis P
    Genes Dev; 2000 Aug; 14(15):1837-51. PubMed ID: 10921899
    [No Abstract]   [Full Text] [Related]  

  • 40. Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma.
    Kauffman JS; Raff RA
    Dev Genes Evol; 2003 Dec; 213(12):612-24. PubMed ID: 14618401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.