These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 15152325)

  • 1. Very high pressure HPLC with 1 mm id columns.
    Colón LA; Cintrón JM; Anspach JA; Fermier AM; Swinney KA
    Analyst; 2004 Jun; 129(6):503-4. PubMed ID: 15152325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical assessment of frictional heating effects and thermostat design on the performance of conventional (3 microm and 5 microm) columns in reversed-phase high-performance liquid chromatography.
    Fallas MM; Hadley MR; McCalley DV
    J Chromatogr A; 2009 May; 1216(18):3961-9. PubMed ID: 19339017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of frictional heating on temperature gradients in ultra-high-pressure liquid chromatography on 2.1mm I.D. columns.
    de Villiers A; Lauer H; Szucs R; Goodall S; Sandra P
    J Chromatogr A; 2006 Apr; 1113(1-2):84-91. PubMed ID: 16476437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic plot equations for evaluating the real performance of the combined use of high temperature and ultra-high pressure in liquid chromatography. Application to commercial instruments and 2.1 and 1 mm I.D. columns.
    Heinisch S; Desmet G; Clicq D; Rocca JL
    J Chromatogr A; 2008 Sep; 1203(2):124-36. PubMed ID: 18675984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput liquid chromatography with sub-2 microm particles at high pressure and high temperature.
    Nguyen DT; Guillarme D; Heinisch S; Barrioulet MP; Rocca JL; Rudaz S; Veuthey JL
    J Chromatogr A; 2007 Oct; 1167(1):76-84. PubMed ID: 17765255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical calculation of the retention enthalpy effect on the viscous heat dissipation band broadening in high performance liquid chromatography columns with a fixed wall temperature.
    Desmet G
    J Chromatogr A; 2006 May; 1116(1-2):89-96. PubMed ID: 16597444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sense and nonsense of high-temperature liquid chromatography.
    Heinisch S; Rocca JL
    J Chromatogr A; 2009 Jan; 1216(4):642-58. PubMed ID: 19091323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance liquid chromatography of seized drugs at elevated pressure with 1.7 microm hybrid C18 stationary phase columns.
    Lurie IS
    J Chromatogr A; 2005 Dec; 1100(2):168-75. PubMed ID: 16226267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of free sterols by high temperature liquid chromatography.
    Riddle LA; Guiochon G
    J Chromatogr A; 2006 Dec; 1137(2):173-9. PubMed ID: 17055522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of hydrophobic metabolites using monolithic silica column in high-performance liquid chromatography and supercritical fluid chromatography.
    Bamba T; Fukusaki E
    J Sep Sci; 2009 Aug; 32(15-16):2699-706. PubMed ID: 19606440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolithic columns in high-performance liquid chromatography.
    Guiochon G
    J Chromatogr A; 2007 Oct; 1168(1-2):101-68; discussion 100. PubMed ID: 17640660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid high performance liquid chromatography method development with high prediction accuracy, using 5cm long narrow bore columns packed with sub-2microm particles and Design Space computer modeling.
    Fekete S; Fekete J; Molnár I; Ganzler K
    J Chromatogr A; 2009 Nov; 1216(45):7816-23. PubMed ID: 19815221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 21st century HPLC workflow for process R&D.
    Karcher BD; Davies ML; Delaney EJ; Venit JJ
    Clin Lab Med; 2007 Mar; 27(1):93-111. PubMed ID: 17416304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical advantages and drawbacks of on-line, multidimensional liquid chromatography using multiple columns operated in parallel.
    Fairchild JN; Horváth K; Guiochon G
    J Chromatogr A; 2009 Aug; 1216(34):6210-7. PubMed ID: 19631325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of the kinetic plot method to analyze commercial high-temperature liquid chromatography systems. I: Intrinsic performance comparison.
    Cabooter D; Heinisch S; Rocca JL; Clicq D; Desmet G
    J Chromatogr A; 2007 Mar; 1143(1-2):121-33. PubMed ID: 17257607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stationary phase optimized selectivity liquid chromatography: Basic possibilities of serially connected columns using the "PRISMA" principle.
    Nyiredy S; Szucs Z; Szepesy L
    J Chromatogr A; 2007 Jul; 1157(1-2):122-30. PubMed ID: 17498720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow inconsistency: the evil twin of column switching--hardware aspects.
    Rogatsky E; Braaten K; Cruikshank G; Jayatillake H; Zheng B; Stein DT
    J Chromatogr A; 2009 Nov; 1216(45):7721-7. PubMed ID: 19765715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of natural product using columns packed with Fused-Core particles.
    Yang P; Litwinski GR; Pursch M; McCabe T; Kuppannan K
    J Sep Sci; 2009 Jun; 32(11):1816-22. PubMed ID: 19425022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic stability evaluation of analytical RP-HPLC columns.
    Ye C; Terfloth G; Li Y; Kord A
    J Pharm Biomed Anal; 2009 Oct; 50(3):426-31. PubMed ID: 19540695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip temperature gradient interaction chromatography.
    Shih CY; Chen Y; Xie J; He Q; Tai YC
    J Chromatogr A; 2006 Apr; 1111(2):272-8. PubMed ID: 16569585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.