These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 15152806)
1. New aminocoumarin antibiotics from a cloQ-defective mutant of the clorobiocin producer Streptomyces roseochromogenes DS12.976. Freitag A; Galm U; Li SM; Heide L J Antibiot (Tokyo); 2004 Mar; 57(3):205-9. PubMed ID: 15152806 [TBL] [Abstract][Full Text] [Related]
2. Use of a halogenase of hormaomycin biosynthesis for formation of new clorobiocin analogues with 5-chloropyrrole moieties. Heide L; Westrich L; Anderle C; Gust B; Kammerer B; Piel J Chembiochem; 2008 Aug; 9(12):1992-9. PubMed ID: 18655076 [TBL] [Abstract][Full Text] [Related]
3. CloQ, a prenyltransferase involved in clorobiocin biosynthesis. Pojer F; Wemakor E; Kammerer B; Chen H; Walsh CT; Li SM; Heide L Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2316-21. PubMed ID: 12618544 [TBL] [Abstract][Full Text] [Related]
4. CloN6, a novel methyltransferase catalysing the methylation of the pyrrole-2-carboxyl moiety of clorobiocin. Westrich L; Heide L; Li SM Chembiochem; 2003 Aug; 4(8):768-73. PubMed ID: 12898629 [TBL] [Abstract][Full Text] [Related]
5. A metabolomics perspective on clorobiocin biosynthesis: discovery of bromobiocin and novel derivatives through LC-MS Janzing NBM; Niehoff M; Sander W; Senges CHR; Schäkermann S; Bandow JE Microbiol Spectr; 2024 Jul; 12(7):e0042324. PubMed ID: 38864648 [TBL] [Abstract][Full Text] [Related]
6. CloN2, a novel acyltransferase involved in the attachment of the pyrrole-2-carboxyl moiety to the deoxysugar of clorobiocin. Xu H; Kahlich R; Kammerer B; Heide L; Li SM Microbiology (Reading); 2003 Aug; 149(Pt 8):2183-2191. PubMed ID: 12904558 [TBL] [Abstract][Full Text] [Related]
7. Acyl transfer in clorobiocin biosynthesis: involvement of several proteins in the transfer of the pyrrole-2-carboxyl moiety to the deoxysugar. Freitag A; Wemakor E; Li SM; Heide L Chembiochem; 2005 Dec; 6(12):2316-25. PubMed ID: 16276503 [TBL] [Abstract][Full Text] [Related]
8. Clorobiocin biosynthesis in Streptomyces: identification of the halogenase and generation of structural analogs. Eustáquio AS; Gust B; Luft T; Li SM; Chater KF; Heide L Chem Biol; 2003 Mar; 10(3):279-88. PubMed ID: 12670542 [TBL] [Abstract][Full Text] [Related]
9. Crystallization and preliminary X-ray analysis of the aromatic prenyltransferase CloQ from the clorobiocin biosynthetic cluster of Streptomyces roseochromogenes. Keller S; Pojer F; Heide L; Lawson DM Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Nov; 62(Pt 11):1153-5. PubMed ID: 17077503 [TBL] [Abstract][Full Text] [Related]
10. New aminocoumarin antibiotics derived from 4-hydroxycinnamic acid are formed after heterologous expression of a modified clorobiocin biosynthetic gene cluster. Anderle C; Li SM; Kammerer B; Gust B; Heide L J Antibiot (Tokyo); 2007 Aug; 60(8):504-10. PubMed ID: 17827661 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning and sequence analysis of the clorobiocin biosynthetic gene cluster: new insights into the biosynthesis of aminocoumarin antibiotics. Pojer F; Li SM; Heide L Microbiology (Reading); 2002 Dec; 148(Pt 12):3901-3911. PubMed ID: 12480894 [TBL] [Abstract][Full Text] [Related]
12. New aminocoumarin antibiotics from genetically engineered Streptomyces strains. Li SM; Heide L Curr Med Chem; 2005; 12(4):419-27. PubMed ID: 15720250 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial and DNA gyrase-inhibitory activities of novel clorobiocin derivatives produced by mutasynthesis. Galm U; Heller S; Shapiro S; Page M; Li SM; Heide L Antimicrob Agents Chemother; 2004 Apr; 48(4):1307-12. PubMed ID: 15047534 [TBL] [Abstract][Full Text] [Related]
14. TPU-0031-A and B, new antibiotics of the novobiocin group produced by Streptomyces sp. TP-A0556. Sasaki T; Igarashi Y; Saito N; Furumai T J Antibiot (Tokyo); 2001 May; 54(5):441-7. PubMed ID: 11480888 [TBL] [Abstract][Full Text] [Related]
15. Genetic approaches to improve clorobiocin production in Streptomyces roseochromogenes NRRL 3504. Melnyk S; Stepanyshyn A; Yushchuk O; Mandler M; Ostash I; Koshla O; Fedorenko V; Kahne D; Ostash B Appl Microbiol Biotechnol; 2022 Feb; 106(4):1543-1556. PubMed ID: 35147743 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of aminocoumarins: inactivation of the methyltransferase gene cloP and generation of new clorobiocin derivatives in a heterologous host. Freitag A; Rapp H; Heide L; Li SM Chembiochem; 2005 Aug; 6(8):1411-8. PubMed ID: 15977275 [TBL] [Abstract][Full Text] [Related]
17. In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic, and synthetic approach. Galm U; Dessoy MA; Schmidt J; Wessjohann LA; Heide L Chem Biol; 2004 Feb; 11(2):173-83. PubMed ID: 15123279 [TBL] [Abstract][Full Text] [Related]
18. Structure and mechanism of the magnesium-independent aromatic prenyltransferase CloQ from the clorobiocin biosynthetic pathway. Metzger U; Keller S; Stevenson CE; Heide L; Lawson DM J Mol Biol; 2010 Dec; 404(4):611-26. PubMed ID: 20946900 [TBL] [Abstract][Full Text] [Related]
19. Production of 8'-halogenated and 8'-unsubstituted novobiocin derivatives in genetically engineered streptomyces coelicolor strains. Eustáquio AS; Gust B; Li SM; Pelzer S; Wohlleben W; Chater KF; Heide L Chem Biol; 2004 Nov; 11(11):1561-72. PubMed ID: 15556007 [TBL] [Abstract][Full Text] [Related]
20. Novobiocin biosynthesis: inactivation of the putative regulatory gene novE and heterologous expression of genes involved in aminocoumarin ring formation. Eustáquio AS; Luft T; Wang ZX; Gust B; Chater KF; Li SM; Heide L Arch Microbiol; 2003 Jul; 180(1):25-32. PubMed ID: 12736771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]