BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 15152983)

  • 1. Cerebellar and hippocampal activation during eyeblink conditioning depends on the experimental paradigm: a MEG study.
    Kirsch P; Achenbach C; Kirsch M; Heinzmann M; Schienle A; Vaitl D
    Neural Plast; 2003; 10(4):291-301. PubMed ID: 15152983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural substrates of eyeblink conditioning: acquisition and retention.
    Christian KM; Thompson RF
    Learn Mem; 2003; 10(6):427-55. PubMed ID: 14657256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural substrates underlying human delay and trace eyeblink conditioning.
    Cheng DT; Disterhoft JF; Power JM; Ellis DA; Desmond JE
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):8108-13. PubMed ID: 18523017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain mechanisms of extinction of the classically conditioned eyeblink response.
    Robleto K; Poulos AM; Thompson RF
    Learn Mem; 2004; 11(5):517-24. PubMed ID: 15466302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny of delay versus trace eyeblink conditioning in the rat.
    Ivkovich D; Paczkowski CM; Stanton ME
    Dev Psychobiol; 2000 Mar; 36(2):148-60. PubMed ID: 10689285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pronounced reduction of acquisition of conditioned eyeblink responses in young adults with focal cerebellar lesions impedes conclusions on the role of the cerebellum in extinction and savings.
    Ernst TM; Beyer L; Mueller OM; Göricke S; Ladd ME; Gerwig M; Timmann D
    Neuropsychologia; 2016 May; 85():287-300. PubMed ID: 27020135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampectomy disrupts the topography of the rat eyeblink response during acquisition and extinction of classical conditioning.
    Christiansen BA; Schmajuk NA
    Brain Res; 1992 Nov; 595(2):206-14. PubMed ID: 1467967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning.
    Kim JJ; Thompson RF
    Trends Neurosci; 1997 Apr; 20(4):177-81. PubMed ID: 9106359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired delay and trace eyeblink conditioning performance in major depressive disorder.
    Greer TL; Trivedi MH; Thompson LT
    J Affect Disord; 2005 Jun; 86(2-3):235-45. PubMed ID: 15935243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ipsilateral cerebellum ablation on acquisition and retention of classically conditioned eyeblink responses in rats.
    Horiuchi T; Kawahara S
    Neurosci Lett; 2010 Mar; 472(2):148-52. PubMed ID: 20138123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-methyl-D-aspartate receptors play important roles in acquisition and expression of the eyeblink conditioned response in glutamate receptor subunit delta2 mutant mice.
    Kato Y; Takatsuki K; Kawahara S; Fukunaga S; Mori H; Mishina M; Kirino Y
    Neuroscience; 2005; 135(4):1017-23. PubMed ID: 16165299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace eyeblink conditioning requires the hippocampus but not autophosphorylation of alphaCaMKII in mice.
    Ohno M; Tseng W; Silva AJ; Disterhoft JF
    Learn Mem; 2005; 12(3):211-5. PubMed ID: 15897256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theta-contingent trial presentation accelerates learning rate and enhances hippocampal plasticity during trace eyeblink conditioning.
    Griffin AL; Asaka Y; Darling RD; Berry SD
    Behav Neurosci; 2004 Apr; 118(2):403-11. PubMed ID: 15113267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of aging in delay and trace human eyeblink conditioning.
    Cheng DT; Faulkner ML; Disterhoft JF; Desmond JE
    Psychol Aging; 2010 Sep; 25(3):684-90. PubMed ID: 20677885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relational and procedural memory systems in the goldfish brain revealed by trace and delay eyeblink-like conditioning.
    Gómez A; Rodríguez-Expósito B; Durán E; Martín-Monzón I; Broglio C; Salas C; Rodríguez F
    Physiol Behav; 2016 Dec; 167():332-340. PubMed ID: 27720737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampo-cerebellar theta band phase synchrony in rabbits.
    Wikgren J; Nokia MS; Penttonen M
    Neuroscience; 2010 Feb; 165(4):1538-45. PubMed ID: 19945512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the cerebellum in eyeblink conditioning.
    Bracha V
    Prog Brain Res; 2004; 143():331-9. PubMed ID: 14653177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional mapping of human learning: a positron emission tomography activation study of eyeblink conditioning.
    Blaxton TA; Zeffiro TA; Gabrieli JD; Bookheimer SY; Carrillo MC; Theodore WH; Disterhoft JF
    J Neurosci; 1996 Jun; 16(12):4032-40. PubMed ID: 8656296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eyeblink classical conditioning: hippocampal formation is for neutral stimulus associations as cerebellum is for association-response.
    Green JT; Woodruff-Pak DS
    Psychol Bull; 2000 Jan; 126(1):138-58. PubMed ID: 10668353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The involvement of the human cerebellum in eyeblink conditioning.
    Gerwig M; Kolb FP; Timmann D
    Cerebellum; 2007; 6(1):38-57. PubMed ID: 17366265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.