These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 15153108)
1. ATPase activity of magnesium chelatase subunit I is required to maintain subunit D in vivo. Lake V; Olsson U; Willows RD; Hansson M Eur J Biochem; 2004 Jun; 271(11):2182-8. PubMed ID: 15153108 [TBL] [Abstract][Full Text] [Related]
2. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Hansson A; Willows RD; Roberts TH; Hansson M Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13944-9. PubMed ID: 12357035 [TBL] [Abstract][Full Text] [Related]
3. Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. Axelsson E; Lundqvist J; Sawicki A; Nilsson S; Schröder I; Al-Karadaghi S; Willows RD; Hansson M Plant Cell; 2006 Dec; 18(12):3606-16. PubMed ID: 17158606 [TBL] [Abstract][Full Text] [Related]
4. ATPase activity associated with the magnesium chelatase H-subunit of the chlorophyll biosynthetic pathway is an artefact. Sirijovski N; Olsson U; Lundqvist J; Al-Karadaghi S; Willows RD; Hansson M Biochem J; 2006 Dec; 400(3):477-84. PubMed ID: 16928192 [TBL] [Abstract][Full Text] [Related]
5. Catalytic turnover triggers exchange of subunits of the magnesium chelatase AAA+ motor unit. Lundqvist J; Braumann I; Kurowska M; Müller AH; Hansson M J Biol Chem; 2013 Aug; 288(33):24012-9. PubMed ID: 23836887 [TBL] [Abstract][Full Text] [Related]
6. Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Hansson A; Kannangara CG; von Wettstein D; Hansson M Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1744-9. PubMed ID: 9990095 [TBL] [Abstract][Full Text] [Related]
7. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. Fodje MN; Hansson A; Hansson M; Olsen JG; Gough S; Willows RD; Al-Karadaghi S J Mol Biol; 2001 Aug; 311(1):111-22. PubMed ID: 11469861 [TBL] [Abstract][Full Text] [Related]
8. Kinetic analyses of the magnesium chelatase provide insights into the mechanism, structure, and formation of the complex. Sawicki A; Willows RD J Biol Chem; 2008 Nov; 283(46):31294-302. PubMed ID: 18790730 [TBL] [Abstract][Full Text] [Related]
9. ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits. Jensen PE; Gibson LC; Hunter CN Biochem J; 1999 Apr; 339 ( Pt 1)(Pt 1):127-34. PubMed ID: 10085236 [TBL] [Abstract][Full Text] [Related]
11. Modification of cysteine residues in the ChlI and ChlH subunits of magnesium chelatase results in enzyme inactivation. Jensen PE; Reid JD; Hunter CN Biochem J; 2000 Dec; 352 Pt 2(Pt 2):435-41. PubMed ID: 11085937 [TBL] [Abstract][Full Text] [Related]
12. The barley magnesium chelatase 150-kd subunit is not an abscisic acid receptor. Müller AH; Hansson M Plant Physiol; 2009 May; 150(1):157-66. PubMed ID: 19176716 [TBL] [Abstract][Full Text] [Related]
13. The ATPase activity of the ChlI subunit of magnesium chelatase and formation of a heptameric AAA+ ring. Reid JD; Siebert CA; Bullough PA; Hunter CN Biochemistry; 2003 Jun; 42(22):6912-20. PubMed ID: 12779346 [TBL] [Abstract][Full Text] [Related]
14. Distribution of ATPase and ATP-to-ADP phosphate exchange activities in magnesium chelatase subunits of Chlorobium vibrioforme and Synechocystis PCC6803. Petersen BL; Kannangara CG; Henningsen KW Arch Microbiol; 1999 Feb; 171(3):146-50. PubMed ID: 10201094 [TBL] [Abstract][Full Text] [Related]
15. BchJ and BchM interact in a 1 : 1 ratio with the magnesium chelatase BchH subunit of Rhodobacter capsulatus. Sawicki A; Willows RD FEBS J; 2010 Nov; 277(22):4709-21. PubMed ID: 20955518 [TBL] [Abstract][Full Text] [Related]
16. Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Jensen PE; Willows RD; Petersen BL; Vothknecht UC; Stummann BM; Kannangara CG; von Wettstein D; Henningsen KW Mol Gen Genet; 1996 Mar; 250(4):383-94. PubMed ID: 8602155 [TBL] [Abstract][Full Text] [Related]
17. Heterologous Expression of the Barley (Hordeum vulgare L.) Xantha-f, -g and -h Genes that Encode Magnesium Chelatase Subunits. Mahdi R; Stuart D; Hansson M; Youssef HM Protein J; 2020 Oct; 39(5):554-562. PubMed ID: 32737834 [TBL] [Abstract][Full Text] [Related]
18. Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Kannangara CG; Vothknecht UC; Hansson M; von Wettstein D Mol Gen Genet; 1997 Mar; 254(1):85-92. PubMed ID: 9108294 [TBL] [Abstract][Full Text] [Related]
19. Characterization of three homologs of the large subunit of the magnesium chelatase from Chlorobaculum tepidum and interaction with the magnesium protoporphyrin IX methyltransferase. Johnson ET; Schmidt-Dannert C J Biol Chem; 2008 Oct; 283(41):27776-27784. PubMed ID: 18693239 [TBL] [Abstract][Full Text] [Related]
20. ATPases and phosphate exchange activities in magnesium chelatase subunits of Rhodobacter sphaeroides. Hansson M; Kannangara CG Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13351-6. PubMed ID: 9371849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]