These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 15153298)
1. Biological control of sciarid and phorid pests of mushroom with predatory mites from the genus Hypoaspis(Acari: Hypoaspidae) and the entomopathogenic nematode Steinernema feltiae. Jess S; Bingham JF Bull Entomol Res; 2004 Apr; 94(2):159-67. PubMed ID: 15153298 [TBL] [Abstract][Full Text] [Related]
2. Biological control of Lycoriella ingenua (Diptera: Sciaridae) in commercial mushroom (Agaricus bisporus) cultivation: a comparison between Hypoaspis miles and Steinernema feltiae. Jess S; Schweizer H Pest Manag Sci; 2009 Nov; 65(11):1195-200. PubMed ID: 19562663 [TBL] [Abstract][Full Text] [Related]
3. The susceptibility of different species of sciarid flies to entomopathogenic nematodes. Gouge DH; Hague NG J Helminthol; 1995 Dec; 69(4):313-8. PubMed ID: 8583125 [TBL] [Abstract][Full Text] [Related]
4. Prey preference and life tables of the predatory mite Parasitus bituberosus (Acari: Parasitidae) when offered various prey combinations. Szafranek P; Lewandowski M; Kozak M Exp Appl Acarol; 2013 Sep; 61(1):53-67. PubMed ID: 23640712 [TBL] [Abstract][Full Text] [Related]
5. Predation of entomopathogenic nematodes by Sancassania sp. (Acari: Acaridae). Karagoz M; Gulcu B; Cakmak I; Kaya HK; Hazir S Exp Appl Acarol; 2007; 43(2):85-95. PubMed ID: 17924198 [TBL] [Abstract][Full Text] [Related]
6. Laboratory screening of potential predators of the poultry red mite (Dermanyssus gallinae) and assessment of Hypoaspis miles performance under varying biotic and abiotic conditions. Ali W; George DR; Shiel RS; Sparagano OA; Guy JH Vet Parasitol; 2012 Jun; 187(1-2):341-4. PubMed ID: 22301375 [TBL] [Abstract][Full Text] [Related]
7. Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips. Wiethoff J; Poehling HM; Meyhöfer R Exp Appl Acarol; 2004; 34(3-4):239-61. PubMed ID: 15651523 [TBL] [Abstract][Full Text] [Related]
8. Propensity towards cannibalism among Hypoaspis aculeifer and H. miles, two soil-dwelling predatory mite species. Berndt O; Meyhöfer R; Poehling HM Exp Appl Acarol; 2003; 31(1-2):1-14. PubMed ID: 14756396 [TBL] [Abstract][Full Text] [Related]
9. Impact of factitious foods and prey on the oviposition of the predatory mites Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae). Navarro-Campos C; Wäckers FL; Pekas A Exp Appl Acarol; 2016 Sep; 70(1):69-78. PubMed ID: 27388446 [TBL] [Abstract][Full Text] [Related]
10. Multiple-species natural enemy approach for biological control of alfalfa snout beetle (Coleoptera: Curculionidae) using entomopathogenic nematodes. Neumann G; Shields EJ J Econ Entomol; 2008 Oct; 101(5):1533-9. PubMed ID: 18950034 [TBL] [Abstract][Full Text] [Related]
11. Non-chemical control of leaf curling midges and sawflies in berries and currants. Wenneker M; Helsen H Commun Agric Appl Biol Sci; 2008; 73(3):361-70. PubMed ID: 19226775 [TBL] [Abstract][Full Text] [Related]
12. Mortality of four stored product pests in stored wheat when exposed to doses of three entomopathogenic nematodes. Athanassiou CG; Kavallieratos NG; Menti H; Karanastasi E J Econ Entomol; 2010 Jun; 103(3):977-84. PubMed ID: 20568646 [TBL] [Abstract][Full Text] [Related]
13. Improving the biocontrol potential of Steinernema feltiae against Delia radicum through dosage, application technique and timing. Beck B; Spanoghe P; Moens M; Brusselman E; Temmerman F; Pollet S; Nuyttens D Pest Manag Sci; 2014 May; 70(5):841-51. PubMed ID: 23943630 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of entomopathogenic nematode Steinernema feltiae (Rhabditida: Steinernematidae) as influenced by Frankliniella occidentalis (Thysanoptera: Thripidae) developmental stage and host plant stage. Buitenhuis R; Shipp JL J Econ Entomol; 2005 Oct; 98(5):1480-5. PubMed ID: 16334313 [TBL] [Abstract][Full Text] [Related]
16. Cheyletus eruditus (taurrus): an effective candidate for the biological control of the snake mite (Ophionyssus natricis). Schilliger LH; Morel D; Bonwitt JH; Marquis O J Zoo Wildl Med; 2013 Sep; 44(3):654-9. PubMed ID: 24063093 [TBL] [Abstract][Full Text] [Related]
17. Biocontrol of Duponcheria fovealis (Lepidoptera: Pyralidae) with soil-dwelling predators in potted plants. Messelink G; Van Wensveen W Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):159-65. PubMed ID: 15149106 [TBL] [Abstract][Full Text] [Related]
18. THE POTENTIAL FOR USING ENTOMOPATHOGENIC NEMATODES TO CONTROL DARKWINGED FUNGUS GNATS BRADYSIA COPROPHILA (LINTNER) ON SUCCULENTS IN GLASS HOUSES. Stefanovska T; Chumak P; Pidlisnyuk V; Condratenko V Commun Agric Appl Biol Sci; 2015; 80(2):41-5. PubMed ID: 27145569 [TBL] [Abstract][Full Text] [Related]
19. Greenhouse and field evaluations of entomopathogenic nematodes (Nematoda:Heterorhabditidae and Steinernematidae) for control of cabbage maggot (Diptera:Anthomyiidae) on cabbage. Schroeder PC; Ferguson CS; Shelton AM; Wilsey WT; Hoffmann MP; Petzoldt C J Econ Entomol; 1996 Oct; 89(5):1109-15. PubMed ID: 8913112 [TBL] [Abstract][Full Text] [Related]
20. Molecular detection of predation by soil micro-arthropods on nematodes. Read DS; Sheppard SK; Bruford MW; Glen DM; Symondson WO Mol Ecol; 2006 Jun; 15(7):1963-72. PubMed ID: 16689911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]