These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 151538)

  • 1. Asymmetrical distribution of thiol groups involved in ATP-32Pi exchange on mitochondrial membranes.
    Blanchy B; Godinot C; Gautheron DC
    Biochem Biophys Res Commun; 1978 Jun; 82(3):776-81. PubMed ID: 151538
    [No Abstract]   [Full Text] [Related]  

  • 2. Labeling of thiols involved in the activity of complex V of the mitochondrial oxidative phosphorylation system.
    Godinot C; Gautheron DC; Galante Y; Hatefi Y
    J Biol Chem; 1981 Jul; 256(13):6776-82. PubMed ID: 6453870
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of 6,6'-dithiodinicotinic acid, a thiol reagent on several mitochondrial functions: coupling mechanism, ATPase and anion transport.
    Abou-Khalil S; Sabadie-Pialoux N; Gautheron D
    Biochem Pharmacol; 1975 Jan; 24(1):49-56. PubMed ID: 123744
    [No Abstract]   [Full Text] [Related]  

  • 4. Modification of the mitochondrial sulfonylurea receptor by thiol reagents.
    Szewczyk A; Wójcik G; Lobanov NA; Nalecz MJ
    Biochem Biophys Res Commun; 1999 Aug; 262(1):255-8. PubMed ID: 10448101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the 29,000-dalton protein and its relevance to oligomycin-sensitive 32Pi-ATP exchange in bovine heart electron transport particles.
    Joshi S; Torok K
    J Biol Chem; 1984 Oct; 259(20):12742-8. PubMed ID: 6238028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate transport across the mitochondrial membrane: the influence of thiol oxidation and of Mg++ on inhibition by mercurials.
    Siliprandi D; Toninello A; Zoccarato F; Bindoli A
    FEBS Lett; 1975 Mar; 51(1):15-7. PubMed ID: 1123044
    [No Abstract]   [Full Text] [Related]  

  • 7. On the role of coupling factor B in the mitochondrial Pi-ATP exchange reaction.
    Joshi S; Hughes JB; Shaikh F; Sanadi DR
    J Biol Chem; 1979 Oct; 254(20):10145-52. PubMed ID: 158592
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphate transport protein of rat heart mitochondria: location of its SH-groups and exploration of their environment.
    Ligeti E; Fonyó A
    Biochim Biophys Acta; 1989 Feb; 973(2):170-5. PubMed ID: 2917158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and properties of an ATP-Pi exchange complex (complex V) from bovine heart mitochondria.
    Stiggall DL; Galante YM; Hatefi Y
    J Biol Chem; 1978 Feb; 253(3):956-64. PubMed ID: 146039
    [No Abstract]   [Full Text] [Related]  

  • 10. [Binding of soluble mitochondrial ATPase by particles deprived of ATPase activity].
    Akimenko VK; Minkov IB; Vinogradov AD
    Biokhimiia; 1971; 36(3):502-6. PubMed ID: 4257177
    [No Abstract]   [Full Text] [Related]  

  • 11. Restoration of Pi-ATP exchange in the oligomycin-sensitive ATPase: effect of a coupling factor.
    Joshi S; Shaikh F; Sanadi DR
    Biochem Biophys Res Commun; 1975 Aug; 65(4):1371-7. PubMed ID: 150273
    [No Abstract]   [Full Text] [Related]  

  • 12. Role of membrane-associated thiol groups in the functional regulation of gastric microsomal (H+ + K+)-transporting ATPase system.
    Nandi J; Meng-Ai Z; Ray TK
    Biochem J; 1983 Sep; 213(3):587-94. PubMed ID: 6311168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on (K+ + H+)-ATPase. II. Role of sulfhydryl groups in its reaction mechanism.
    Schrijen JJ; van Groningen-Luyben WA; de Pont JJ; Bonting SL
    Biochim Biophys Acta; 1981 Jan; 640(2):473-86. PubMed ID: 6260255
    [No Abstract]   [Full Text] [Related]  

  • 14. Influence of molsidomine on thiol-groups of mitochondrial membranes.
    Zimmer G; Schraven E; Mainka L; Kriege H
    Arzneimittelforschung; 1985; 35(1):103-6. PubMed ID: 3157383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure of thiol groups and bound nucleotide in G-actin: thiols as an indicator for the native state of actin.
    Stournaras C
    Anticancer Res; 1990; 10(6):1651-9. PubMed ID: 2285239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free--SH variations during ATP synthesis by oxidative phosphorylation in heart muscle mitochondria.
    Sabadie-Pialoux N; Gautheron D
    Biochim Biophys Acta; 1971 Apr; 234(1):9-15. PubMed ID: 5560366
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy linked NAD reduction in phophorylating submitochondrial particles from heavy layer beef heart mitochondria. A lag phenomenon and its localization.
    Schuurmans Stekhoven FM; Sani BP; Sanadi DR
    Biochem Biophys Res Commun; 1970; 39(6):1026-30. PubMed ID: 4327299
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies of the oligomycin-sensitive ATPase from yeast mitochondria. Reconstitution of ATP-32Pi exchange in the presence of phospholipids.
    Ryrie IJ
    J Supramol Struct; 1975; 3(3):242-7. PubMed ID: 171520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Do criteria and properties exist which permit us to discriminate between the different thiol groups implicated in mitochondrial translocations and in the coupling mechanism?].
    Gautheron DC
    Biochimie; 1973; 55(6):727-45. PubMed ID: 4272444
    [No Abstract]   [Full Text] [Related]  

  • 20. Vesicular preparation of a highly coupled ATPase-ATP synthase complex from pig heart mitochondria.
    Penin F; Godinot C; Comte J; Gautheron DC
    Biochim Biophys Acta; 1982 Feb; 679(2):198-209. PubMed ID: 6277375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.