BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15154761)

  • 1. The impact of available experimental data on the prediction of 1H NMR chemical shifts by neural networks.
    Binev Y; Corvo M; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):946-9. PubMed ID: 15154761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks.
    Binev Y; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):940-5. PubMed ID: 15154760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of 1H NMR coupling constants with associative neural networks trained for chemical shifts.
    Binev Y; Marques MM; Aires-de-Sousa J
    J Chem Inf Model; 2007; 47(6):2089-97. PubMed ID: 17956083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance validation of neural network based (13)c NMR prediction using a publicly available data source.
    Blinov KA; Smurnyy YD; Elyashberg ME; Churanova TS; Kvasha M; Steinbeck C; Lefebvre BA; Williams AJ
    J Chem Inf Model; 2008 Mar; 48(3):550-5. PubMed ID: 18293952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic assignment of absolute configuration from 1D NMR data.
    Zhang QY; Carrera G; Gomes MJ; Aires-de-Sousa J
    J Org Chem; 2005 Mar; 70(6):2120-30. PubMed ID: 15760195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel methods of automated structure elucidation based on 13C NMR spectroscopy.
    Meiler J; Köck M
    Magn Reson Chem; 2004 Dec; 42(12):1042-5. PubMed ID: 15470690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H chemical shifts in NMR. Part 21--prediction of the 1H chemical shifts of molecules containing the ester group: a modelling and ab initio investigation.
    Abraham RJ; Bardsley B; Mobli M; Smith RJ
    Magn Reson Chem; 2005 Jan; 43(1):3-15. PubMed ID: 15390026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general 13C NMR spectrum predictor using data mining techniques.
    Le Bret C
    SAR QSAR Environ Res; 2000; 11(3-4):211-34. PubMed ID: 10969872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial neural network analysis of 1H nuclear magnetic resonance spectroscopic data from human plasma.
    Ala-Korpela M; Hiltunen Y; Bell JD
    Anticancer Res; 1996; 16(3B):1473-7. PubMed ID: 8694515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of cytotoxicity data (CC(50)) of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives by artificial neural network trained with Levenberg-Marquardt algorithm.
    Arab Chamjangali M; Beglari M; Bagherian G
    J Mol Graph Model; 2007 Jul; 26(1):360-7. PubMed ID: 17350867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction of solvent accessibility using neural networks-based regression.
    Adamczak R; Porollo A; Meller J
    Proteins; 2004 Sep; 56(4):753-67. PubMed ID: 15281128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution patterns in aromatic rings by increment analysis. Model development and application to natural organic matter.
    Perdue EM; Hertkorn N; Kettrup A
    Anal Chem; 2007 Feb; 79(3):1010-21. PubMed ID: 17263329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of an NMR chemical shift prediction application with the accuracy necessary to grade proton NMR spectra for identity.
    Spanton SG; Whittern D
    Magn Reson Chem; 2009 Dec; 47(12):1055-61. PubMed ID: 19725074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward more reliable 13C and 1H chemical shift prediction: a systematic comparison of neural-network and least-squares regression based approaches.
    Smurnyy YD; Blinov KA; Churanova TS; Elyashberg ME; Williams AJ
    J Chem Inf Model; 2008 Jan; 48(1):128-34. PubMed ID: 18052244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.
    Roslund MU; Säwén E; Landström J; Rönnols J; Jonsson KH; Lundborg M; Svensson MV; Widmalm G
    Carbohydr Res; 2011 Aug; 346(11):1311-9. PubMed ID: 21621752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of 1H NMR chemical shifts using neural networks.
    Aires-de-Sousa J; Hemmer MC; Gasteiger J
    Anal Chem; 2002 Jan; 74(1):80-90. PubMed ID: 11795822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data.
    Chen H; Zhou HX
    Proteins; 2005 Oct; 61(1):21-35. PubMed ID: 16080151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H chemical shifts in NMR: Part 22-Prediction of the 1H chemical shifts of alcohols, diols and inositols in solution, a conformational and solvation investigation.
    Abraham RJ; Byrne JJ; Griffiths L; Koniotou R
    Magn Reson Chem; 2005 Aug; 43(8):611-24. PubMed ID: 15986495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural networks convergence using physicochemical data.
    Karelson M; Dobchev DA; Kulshyn OV; Katritzky AR
    J Chem Inf Model; 2006; 46(5):1891-7. PubMed ID: 16995718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of the pi-electron conjugation on (15)N, (13)C and (1)H NMR chemical shifts in push-pull benzothiazolium salts. Experimental and theoretical study.
    Hrobárik P; Horváth B; Sigmundová I; Zahradník P; Malkina OL
    Magn Reson Chem; 2007 Nov; 45(11):942-53. PubMed ID: 17924356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.