BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15154769)

  • 1. Classification of dopamine antagonists using TFS-based artificial neural network.
    Fujishima S; Takahashi Y
    J Chem Inf Comput Sci; 2004; 44(3):1006-9. PubMed ID: 15154769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of dopamine, serotonin, and dual antagonists by decision trees.
    Kim HJ; Choo H; Cho YS; Koh HY; No KT; Pae AN
    Bioorg Med Chem; 2006 Apr; 14(8):2763-70. PubMed ID: 16387502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of dopamine antagonists using functional feature hypothesis and topological descriptors.
    Kim HJ; Cho YS; Koh HY; Kong JY; No KT; Pae AN
    Bioorg Med Chem; 2006 Mar; 14(5):1454-61. PubMed ID: 16256354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release.
    Zheng F; Bayram E; Sumithran SP; Ayers JT; Zhan CG; Schmitt JD; Dwoskin LP; Crooks PA
    Bioorg Med Chem; 2006 May; 14(9):3017-37. PubMed ID: 16431111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines.
    Kawai K; Fujishima S; Takahashi Y
    J Chem Inf Model; 2008 Jun; 48(6):1152-60. PubMed ID: 18533712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Artificial neural network for the identification of infrared spectra].
    Li Y; Wang J; Wang L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Aug; 20(4):477-9. PubMed ID: 12945353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices.
    Wang R; Jiang J; Pan Y; Cao H; Cui Y
    J Hazard Mater; 2009 Jul; 166(1):155-86. PubMed ID: 19101083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR modeling of anti-invasive activity of organic compounds using structural descriptors.
    Katritzky AR; Kuanar M; Dobchev DA; Vanhoecke BW; Karelson M; Parmar VS; Stevens CV; Bracke ME
    Bioorg Med Chem; 2006 Oct; 14(20):6933-9. PubMed ID: 16908166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico screening of estrogen-like chemicals based on different nonlinear classification models.
    Liu H; Papa E; Walker JD; Gramatica P
    J Mol Graph Model; 2007 Jul; 26(1):135-44. PubMed ID: 17293141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of artificial neural networks to establish a predictive mortality risk model in children admitted to a paediatric intensive care unit.
    Chan CH; Chan EY; Ng DK; Chow PY; Kwok KL
    Singapore Med J; 2006 Nov; 47(11):928-34. PubMed ID: 17075658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drugs and nondrugs: an effective discrimination with topological methods and artificial neural networks.
    Murcia-Soler M; Pérez-Giménez F; García-March FJ; Salabert-Salvador MT; Díaz-Villanueva W; Castro-Bleda MJ
    J Chem Inf Comput Sci; 2003; 43(5):1688-702. PubMed ID: 14502504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence based optimization of exocellular glucansucrase production from Leuconostoc dextranicum NRRL B-1146.
    Singh A; Majumder A; Goyal A
    Bioresour Technol; 2008 Nov; 99(17):8201-6. PubMed ID: 18440808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can we improve the prediction of stone-free status after extracorporeal shock wave lithotripsy for ureteral stones? A neural network or a statistical model?
    Gomha MA; Sheir KZ; Showky S; Abdel-Khalek M; Mokhtar AA; Madbouly K
    J Urol; 2004 Jul; 172(1):175-9. PubMed ID: 15201765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices.
    Pan Y; Jiang J; Wang R; Cao H; Zhao J
    J Hazard Mater; 2008 Sep; 157(2-3):510-7. PubMed ID: 18280036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial neural networks in analysis of indinavir and its degradation products retention.
    Jancić-Stojanović B; Ivanović D; Malenović A; Medenica M
    Talanta; 2009 Apr; 78(1):107-12. PubMed ID: 19174211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation.
    Votano JR; Parham M; Hall LH; Kier LB; Hall LM
    Chem Biodivers; 2004 Nov; 1(11):1829-41. PubMed ID: 17191819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes.
    Arulsudar N; Subramanian N; Muthy RS
    J Pharm Pharm Sci; 2005 Aug; 8(2):243-58. PubMed ID: 16124936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic neural network model for the in silico evaluation of anti-HIV activity and mechanism of action.
    Vilar S; Santana L; Uriarte E
    J Med Chem; 2006 Feb; 49(3):1118-24. PubMed ID: 16451076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm.
    Plumb AP; Rowe RC; York P; Brown M
    Eur J Pharm Sci; 2005; 25(4-5):395-405. PubMed ID: 15893460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.