BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 15154787)

  • 1. Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures.
    Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A
    J Chem Inf Comput Sci; 2004; 44(3):1177-85. PubMed ID: 15154787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination Rules for Group Fusion in Similarity-Based Virtual Screening.
    Chen B; Mueller C; Willett P
    Mol Inform; 2010 Jul; 29(6-7):533-41. PubMed ID: 27463331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum common substructure-based data fusion in similarity searching.
    Duesbury E; Holliday J; Willett P
    J Chem Inf Model; 2015 Feb; 55(2):222-30. PubMed ID: 25602464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Tanimoto Similarity Value Distributions and Predicting Search Results.
    Vogt M; Bajorath J
    Mol Inform; 2017 Jul; 36(7):. PubMed ID: 28032955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusing similarity rankings in ligand-based virtual screening.
    Willett P
    Comput Struct Biotechnol J; 2013; 5():e201302002. PubMed ID: 24688695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-Classified Multilevel Modelling of the Effectiveness of Similarity-Based Virtual Screening.
    Mazalan L; Bell A; Sbaffi L; Willett P
    ChemMedChem; 2018 Mar; 13(6):582-587. PubMed ID: 29106074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Condorcet and borda count fusion method for ligand-based virtual screening.
    Ahmed A; Saeed F; Salim N; Abdo A
    J Cheminform; 2014; 6():19. PubMed ID: 24883114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing structural fingerprints using a literature-based similarity benchmark.
    O'Boyle NM; Sayle RA
    J Cheminform; 2016; 8():36. PubMed ID: 27382417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Database fingerprint (DFP): an approach to represent molecular databases.
    Fernández-de Gortari E; García-Jacas CR; Martinez-Mayorga K; Medina-Franco JL
    J Cheminform; 2017; 9():9. PubMed ID: 28224019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening.
    Menke J; Koch O
    J Chem Inf Model; 2021 Feb; 61(2):664-675. PubMed ID: 33497572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico target fishing: addressing a "Big Data" problem by ligand-based similarity rankings with data fusion.
    Liu X; Xu Y; Li S; Wang Y; Peng J; Luo C; Luo X; Zheng M; Chen K; Jiang H
    J Cheminform; 2014; 6():33. PubMed ID: 24976868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the effects of related fingerprints on molecular similarity using an eigenvalue entropy approach.
    Kuwahara H; Gao X
    J Cheminform; 2021 Mar; 13(1):27. PubMed ID: 33757582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping.
    Škuta C; Cortés-Ciriano I; Dehaen W; Kříž P; van Westen GJP; Tetko IV; Bender A; Svozil D
    J Cheminform; 2020 May; 12(1):39. PubMed ID: 33431038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life beyond the Tanimoto coefficient: similarity measures for interaction fingerprints.
    Rácz A; Bajusz D; Héberger K
    J Cheminform; 2018 Oct; 10(1):48. PubMed ID: 30288626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical-based database fingerprint: chemical space dependent representation of compound databases.
    Sánchez-Cruz N; Medina-Franco JL
    J Cheminform; 2018 Nov; 10(1):55. PubMed ID: 30467740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Calculation of Molecular Structural Similarity: Principles and Practice.
    Willett P
    Mol Inform; 2014 Jun; 33(6-7):403-13. PubMed ID: 27485978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual Activity Profiling of Bioactive Molecules by 1D Fingerprinting.
    Sebastian A; Bender A; Ramakrishnan V
    Mol Inform; 2010 Nov; 29(11):773-9. PubMed ID: 27464267
    [No Abstract]   [Full Text] [Related]  

  • 18. Combining Similarity Searching and Network Analysis for the Identification of Active Compounds.
    Kunimoto R; Bajorath J
    ACS Omega; 2018 Apr; 3(4):3768-3777. PubMed ID: 30023879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended similarity indices: the benefits of comparing more than two objects simultaneously. Part 1: Theory and characteristics
    Miranda-Quintana RA; Bajusz D; Rácz A; Héberger K
    J Cheminform; 2021 Apr; 13(1):32. PubMed ID: 33892802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of fingerprint-based similarity searching and kernel-based partial least squares analysis to predict inhibitory activity against CSK, HER2, JAK1, JAK2, and JAK3.
    Deokar H; Deokar M; Buolamwini JK
    Mol Divers; 2024 Apr; 28(2):497-507. PubMed ID: 36648693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.