BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 15155877)

  • 1. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato.
    Ron M; Avni A
    Plant Cell; 2004 Jun; 16(6):1604-15. PubMed ID: 15155877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1.
    Bar M; Sharfman M; Ron M; Avni A
    Plant J; 2010 Sep; 63(5):791-800. PubMed ID: 20561260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SlRLK-like is a malectin-like domain protein affecting localization and abundance of LeEIX2 receptor resulting in suppression of EIX-induced immune responses.
    Sussholz O; Pizarro L; Schuster S; Avni A
    Plant J; 2020 Dec; 104(5):1369-1381. PubMed ID: 33048397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2.
    Bar M; Avni A
    Plant J; 2009 Aug; 59(4):600-11. PubMed ID: 19392695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sterol-dependent induction of plant defense responses by a microbe-associated molecular pattern from Trichoderma viride.
    Sharfman M; Bar M; Schuster S; Leibman M; Avni A
    Plant Physiol; 2014 Feb; 164(2):819-27. PubMed ID: 24351686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LeEix1 functions as a decoy receptor to attenuate LeEix2 signaling.
    Bar M; Sharfman M; Avni A
    Plant Signal Behav; 2011 Mar; 6(3):455-7. PubMed ID: 21364318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The LeEIX Locus Determines Pathogen Resistance in Tomato.
    Leibman-Markus M; Gupta R; Pizarro L; Bar M
    Phytopathology; 2023 Feb; 113(2):277-285. PubMed ID: 36044638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LeEIX2 Interactors' Analysis and EIX-Mediated Responses Measurement.
    Leibman-Markus M; Schuster S; Avni A
    Methods Mol Biol; 2017; 1578():167-172. PubMed ID: 28220423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Editing of the Decoy Receptor
    Leibman-Markus M; Gupta R; Pizarro L; Gershony O; Rav-David D; Elad Y; Bar M
    Front Fungal Biol; 2021; 2():678840. PubMed ID: 37744104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endosomal signaling of the tomato leucine-rich repeat receptor-like protein LeEix2.
    Sharfman M; Bar M; Ehrlich M; Schuster S; Melech-Bonfil S; Ezer R; Sessa G; Avni A
    Plant J; 2011 Nov; 68(3):413-23. PubMed ID: 21736652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death.
    Hanania U; Furman-Matarasso N; Ron M; Avni A
    Plant J; 1999 Sep; 19(5):533-41. PubMed ID: 10504575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an essential component of the elicitation active site of the EIX protein elicitor.
    Rotblat B; Enshell-Seijffers D; Gershoni JM; Schuster S; Avni A
    Plant J; 2002 Dec; 32(6):1049-55. PubMed ID: 12492845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato.
    van den Burg HA; Tsitsigiannis DI; Rowland O; Lo J; Rallapalli G; Maclean D; Takken FL; Jones JD
    Plant Cell; 2008 Mar; 20(3):697-719. PubMed ID: 18375657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A point mutation in the ethylene-inducing xylanase elicitor inhibits the beta-1-4-endoxylanase activity but not the elicitation activity.
    Furman-Matarasso N; Cohen E; Du Q; Chejanovsky N; Hanania U; Avni A
    Plant Physiol; 1999 Oct; 121(2):345-51. PubMed ID: 10517825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features.
    Adams-Phillips L; Barry C; Kannan P; Leclercq J; Bouzayen M; Giovannoni J
    Plant Mol Biol; 2004 Feb; 54(3):387-404. PubMed ID: 15284494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell-free approach to identify binding hotspots in plant immune receptors.
    Markou GC; Sarkar CA
    Sci Rep; 2022 Jan; 12(1):501. PubMed ID: 35017559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease.
    Catanzariti AM; Lim GTT; Jones DA
    New Phytol; 2015 Jul; 207(1):106-118. PubMed ID: 25740416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tomato Ve disease resistance genes encode cell surface-like receptors.
    Kawchuk LM; Hachey J; Lynch DR; Kulcsar F; van Rooijen G; Waterer DR; Robertson A; Kokko E; Byers R; Howard RJ; Fischer R; Prufer D
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6511-5. PubMed ID: 11331751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intracellular nucleotide-binding leucine-rich repeat receptor (SlNRC4a) enhances immune signalling elicited by extracellular perception.
    Leibman-Markus M; Pizarro L; Schuster S; Lin ZJD; Gershony O; Bar M; Coaker G; Avni A
    Plant Cell Environ; 2018 Oct; 41(10):2313-2327. PubMed ID: 29790585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato.
    Yang H; Sun Y; Wang H; Zhao T; Xu X; Jiang J; Li J
    BMC Plant Biol; 2021 Feb; 21(1):72. PubMed ID: 33530947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.