BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15156154)

  • 41. Evolving a polymerase for hydrophobic base analogues.
    Loakes D; Gallego J; Pinheiro VB; Kool ET; Holliger P
    J Am Chem Soc; 2009 Oct; 131(41):14827-37. PubMed ID: 19778048
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A longer finger-subdomain of family A DNA polymerases found by metagenomic analysis strengthens DNA binding and primer extension abilities.
    Yamagami T; Matsukawa H; Tsunekawa S; Kawarabayasi Y; Ishino S; Ishino Y
    Gene; 2016 Feb; 576(2 Pt 1):690-5. PubMed ID: 26476294
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The implications of using mutagenic primers in combination with Taq polymerase having proofreading activity.
    Papadopoulou E; Metaxa-Mariatou V; Hatzaki A; Hatzis T; Nasioulas G
    Biologicals; 2004 Jun; 32(2):84-7. PubMed ID: 15454186
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Azide and trans-cyclooctene dUTPs: incorporation into DNA probes and fluorescent click-labelling.
    Ren X; El-Sagheer AH; Brown T
    Analyst; 2015 Apr; 140(8):2671-8. PubMed ID: 25734317
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues.
    Zaccolo M; Williams DM; Brown DM; Gherardi E
    J Mol Biol; 1996 Feb; 255(4):589-603. PubMed ID: 8568899
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substitution of Ile(707) for Leu in Klentaq DNA polymerase reduces the amplification capacity of the enzyme.
    Davalieva K; Efremov DG
    Prilozi; 2009 Dec; 30(2):57-69. PubMed ID: 20087249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficiency and specificity of microRNA-primed nucleotide analog incorporation by various DNA polymerases.
    Sun Y; Gregory KJ; Golovlev V
    Anal Biochem; 2009 Aug; 391(2):85-90. PubMed ID: 19442643
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nucleotide insertion opposite a cyclobutane pyrimidine dimer analogue caused from photoligation by a replicative DNA polymerase.
    Ogino M; Okamura D; Yoshimura Y; Fujimoto K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):125-6. PubMed ID: 17150849
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Synthesis of 2',3',-dideoxy-3'-fluoradenosine and -guanosine, their 5'-triphosphates and a study of 2',3'-dideoxy-3'-fluoronucleoside- 5'-triphosphates as substrates for DNA-polymerases].
    Kvasiuk EI; Zaĭtseva HB; Savochkina LP; Chidzhavadze ZG; Bibilashvili RSh
    Bioorg Khim; 1989 Jun; 15(6):781-95. PubMed ID: 2675851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.
    Tubeleviciute A; Skirgaila R
    Protein Eng Des Sel; 2010 Aug; 23(8):589-97. PubMed ID: 20513707
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pre-steady-state kinetic studies of the fidelity and mechanism of polymerization catalyzed by truncated human DNA polymerase lambda.
    Fiala KA; Abdel-Gawad W; Suo Z
    Biochemistry; 2004 Jun; 43(21):6751-62. PubMed ID: 15157109
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Incorporation of reporter-labeled nucleotides by DNA polymerases.
    Anderson JP; Angerer B; Loeb LA
    Biotechniques; 2005 Feb; 38(2):257-64. PubMed ID: 15727132
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity.
    Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W
    Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases.
    Pavlov AR; Belova GI; Kozyavkin SA; Slesarev AI
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13510-5. PubMed ID: 12368475
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combined amplification and sequencing in a single reaction using two DNA polymerases with differential incorporation rates for dideoxynucleotides.
    van den Boom D; Ruppert A; Jurinke C; Köster H
    J Biochem Biophys Methods; 1997 Sep; 35(2):69-79. PubMed ID: 9350513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro.
    Wang Y; Prosen DE; Mei L; Sullivan JC; Finney M; Vander Horn PB
    Nucleic Acids Res; 2004; 32(3):1197-207. PubMed ID: 14973201
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modifying the beta,gamma leaving-group bridging oxygen alters nucleotide incorporation efficiency, fidelity, and the catalytic mechanism of DNA polymerase beta.
    Sucato CA; Upton TG; Kashemirov BA; Batra VK; Martínek V; Xiang Y; Beard WA; Pedersen LC; Wilson SH; McKenna CE; Florián J; Warshel A; Goodman MF
    Biochemistry; 2007 Jan; 46(2):461-71. PubMed ID: 17209556
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PCR amplification of 4'-thioDNA using 2'-deoxy-4'-thionucleoside 5'-triphosphates.
    Kojima T; Furukawa K; Maruyama H; Inoue N; Tarashima N; Matsuda A; Minakawa N
    ACS Synth Biol; 2013 Sep; 2(9):529-36. PubMed ID: 23957635
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human deoxycytidylate deaminase. Substrate and regulator specificities and their chemotherapeutic implications.
    Mancini WR; Cheng YC
    Mol Pharmacol; 1983 Jan; 23(1):159-64. PubMed ID: 6306421
    [No Abstract]   [Full Text] [Related]  

  • 60. The Effect of γ Phosphate Modified Deoxynucleotide Substrates on PCR Activity and Fidelity.
    Hashiya F; Murase H; Chandela A; Hiraoka H; Inagaki M; Nakashima Y; Abe N; Nakamura M; Terai G; Kimura Y; Ando K; Oka N; Asai K; Abe H
    Chembiochem; 2023 Jul; 24(14):e202200572. PubMed ID: 37253903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.