These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 15157072)
1. Identifying latent enzyme activities: substrate ambiguity within modern bacterial sugar kinases. Miller BG; Raines RT Biochemistry; 2004 Jun; 43(21):6387-92. PubMed ID: 15157072 [TBL] [Abstract][Full Text] [Related]
2. Reconstitution of a defunct glycolytic pathway via recruitment of ambiguous sugar kinases. Miller BG; Raines RT Biochemistry; 2005 Aug; 44(32):10776-83. PubMed ID: 16086580 [TBL] [Abstract][Full Text] [Related]
3. Divergent evolution of function in the ROK sugar kinase superfamily: role of enzyme loops in substrate specificity. Larion M; Moore LB; Thompson SM; Miller BG Biochemistry; 2007 Nov; 46(47):13564-72. PubMed ID: 17979299 [TBL] [Abstract][Full Text] [Related]
4. Molecular and biochemical characterization of novel glucokinases from Trypanosoma cruzi and Leishmania spp. Cáceres AJ; Quiñones W; Gualdrón M; Cordeiro A; Avilán L; Michels PA; Concepción JL Mol Biochem Parasitol; 2007 Dec; 156(2):235-45. PubMed ID: 17904661 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary potential of (beta/alpha)8-barrels: in vitro enhancement of a "new" reaction in the enolase superfamily. Vick JE; Schmidt DM; Gerlt JA Biochemistry; 2005 Sep; 44(35):11722-9. PubMed ID: 16128573 [TBL] [Abstract][Full Text] [Related]
7. The crystal structure of Trypanosoma cruzi glucokinase reveals features determining oligomerization and anomer specificity of hexose-phosphorylating enzymes. Cordeiro AT; Cáceres AJ; Vertommen D; Concepción JL; Michels PA; Versées W J Mol Biol; 2007 Oct; 372(5):1215-26. PubMed ID: 17761195 [TBL] [Abstract][Full Text] [Related]
8. The ADP-dependent sugar kinase family: kinetic and evolutionary aspects. Guixé V; Merino F IUBMB Life; 2009 Jul; 61(7):753-61. PubMed ID: 19548321 [TBL] [Abstract][Full Text] [Related]
9. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
10. Structure and function of 2,3-dimethylmalate lyase, a PEP mutase/isocitrate lyase superfamily member. Narayanan B; Niu W; Joosten HJ; Li Z; Kuipers RK; Schaap PJ; Dunaway-Mariano D; Herzberg O J Mol Biol; 2009 Feb; 386(2):486-503. PubMed ID: 19133276 [TBL] [Abstract][Full Text] [Related]
11. 23-Residue C-terminal alpha-helix governs kinetic cooperativity in monomeric human glucokinase. Larion M; Miller BG Biochemistry; 2009 Jul; 48(26):6157-65. PubMed ID: 19473033 [TBL] [Abstract][Full Text] [Related]
12. Functional studies of active-site mutants from Drosophila melanogaster deoxyribonucleoside kinase. Investigations of the putative catalytic glutamate-arginine pair and of residues responsible for substrate specificity. Egeblad-Welin L; Sonntag Y; Eklund H; Munch-Petersen B FEBS J; 2007 Mar; 274(6):1542-51. PubMed ID: 17302737 [TBL] [Abstract][Full Text] [Related]
13. Specificity evolution of the ADP-dependent sugar kinase family: in silico studies of the glucokinase/phosphofructokinase bifunctional enzyme from Methanocaldococcus jannaschii. Merino F; Guixé V FEBS J; 2008 Aug; 275(16):4033-44. PubMed ID: 18625008 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of a novel glucose-phosphorylating enzyme in Kluyveromyces lactis. Kettner K; Müller EC; Otto A; Rödel G; Breunig KD; Kriegel TM FEMS Yeast Res; 2007 Aug; 7(5):683-92. PubMed ID: 17573926 [TBL] [Abstract][Full Text] [Related]
15. A genome rearrangement has orphaned the Escherichia coli K-12 AcpT phosphopantetheinyl transferase from its cognate Escherichia coli O157:H7 substrates. De Lay NR; Cronan JE Mol Microbiol; 2006 Jul; 61(1):232-42. PubMed ID: 16824108 [TBL] [Abstract][Full Text] [Related]
16. Substrate specificity and kinetic mechanism of Escherichia coli ribulokinase. Lee LV; Gerratana B; Cleland WW Arch Biochem Biophys; 2001 Dec; 396(2):219-24. PubMed ID: 11747300 [TBL] [Abstract][Full Text] [Related]
17. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member. Parducci RE; Cabrera R; Baez M; Guixé V Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375 [TBL] [Abstract][Full Text] [Related]
18. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease. Flores N; Leal L; Sigala JC; de Anda R; Escalante A; Martínez A; Ramírez OT; Gosset G; Bolivar F J Mol Microbiol Biotechnol; 2007; 13(1-3):105-16. PubMed ID: 17693718 [TBL] [Abstract][Full Text] [Related]
19. The Mycoplasma pneumoniae MPN229 gene encodes a protein that selectively binds single-stranded DNA and stimulates Recombinase A-mediated DNA strand exchange. Sluijter M; Hoogenboezem T; Hartwig NG; Vink C BMC Microbiol; 2008 Oct; 8():167. PubMed ID: 18831760 [TBL] [Abstract][Full Text] [Related]
20. Structure and reaction mechanism of L-rhamnulose kinase from Escherichia coli. Grueninger D; Schulz GE J Mol Biol; 2006 Jun; 359(3):787-97. PubMed ID: 16674975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]