These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 1515740)
1. Hopf bifurcation in three-species food chain models with group defense. Freedman HI; Ruan S Math Biosci; 1992 Sep; 111(1):73-87. PubMed ID: 1515740 [TBL] [Abstract][Full Text] [Related]
2. Global dynamics of an immunosuppressive infection model with stage structure. Shu HY; Xu WX; Hao ZH Math Biosci Eng; 2020 Jan; 17(3):2082-2102. PubMed ID: 32233525 [TBL] [Abstract][Full Text] [Related]
3. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey. Kooi BW; Venturino E Math Biosci; 2016 Apr; 274():58-72. PubMed ID: 26874217 [TBL] [Abstract][Full Text] [Related]
4. Effects of additional food in a delayed predator-prey model. Sahoo B; Poria S Math Biosci; 2015 Mar; 261():62-73. PubMed ID: 25550287 [TBL] [Abstract][Full Text] [Related]
5. Remarks on food chain dynamics. Kuznetsov YA; Rinaldi S Math Biosci; 1996 May; 134(1):1-33. PubMed ID: 8935953 [TBL] [Abstract][Full Text] [Related]
6. The subcritical collapse of predator populations in discrete-time predator-prey models. Neubert MG; Kot M Math Biosci; 1992 Jun; 110(1):45-66. PubMed ID: 1623297 [TBL] [Abstract][Full Text] [Related]
7. The diffusive Lotka-Volterra predator-prey system with delay. Al Noufaey KS; Marchant TR; Edwards MP Math Biosci; 2015 Dec; 270(Pt A):30-40. PubMed ID: 26471317 [TBL] [Abstract][Full Text] [Related]
8. Consequences of symbiosis for food web dynamics. Kooi BW; Kuijper LD; Kooijman SA J Math Biol; 2004 Sep; 49(3):227-71. PubMed ID: 15293013 [TBL] [Abstract][Full Text] [Related]
9. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Shen Z; Wei J Math Biosci Eng; 2018 Jun; 15(3):693-715. PubMed ID: 30380326 [TBL] [Abstract][Full Text] [Related]
10. Prey selection, vertical migrations and the impacts of harvesting upon the population dynamics of a predator-prey system. Edwards HJ; Dytham C; Pitchford JW; Righton D Bull Math Biol; 2007 Aug; 69(6):1827-46. PubMed ID: 17443393 [TBL] [Abstract][Full Text] [Related]
11. Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion. Wang M Math Biosci; 2008 Apr; 212(2):149-60. PubMed ID: 18346760 [TBL] [Abstract][Full Text] [Related]
12. Bifurcation of a delayed Gause predator-prey model with Michaelis-Menten type harvesting. Liu W; Jiang Y J Theor Biol; 2018 Feb; 438():116-132. PubMed ID: 29129548 [TBL] [Abstract][Full Text] [Related]
13. Bifurcation structure of two coupled FHN neurons with delay. Farajzadeh Tehrani N; Razvan M Math Biosci; 2015 Dec; 270(Pt A):41-56. PubMed ID: 26476143 [TBL] [Abstract][Full Text] [Related]
14. Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters. Zhang X; Zhao H J Theor Biol; 2014 Dec; 363():390-403. PubMed ID: 25172773 [TBL] [Abstract][Full Text] [Related]
15. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Chang X; Wei J Math Biosci Eng; 2013 Aug; 10(4):979-96. PubMed ID: 23906199 [TBL] [Abstract][Full Text] [Related]
16. Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient. Jiang ZC; Bi XH; Zhang TQ; Pradeep BGSA Math Biosci Eng; 2019 Apr; 16(5):3807-3829. PubMed ID: 31499637 [TBL] [Abstract][Full Text] [Related]
17. Modelling, singular perturbation and bifurcation analyses of bitrophic food chains. Kooi BW; Poggiale JC Math Biosci; 2018 Jul; 301():93-110. PubMed ID: 29684407 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of a three species ratio-dependent food chain model with intra-specific competition within the top predator. Ali N; Haque M; Venturino E; Chakravarty S Comput Biol Med; 2017 Jun; 85():63-74. PubMed ID: 28460257 [TBL] [Abstract][Full Text] [Related]
19. Exploring the dynamics of a tritrophic food chain model with multiple gestation periods. Upadhyay RK; Mishra S; Dong YP; Takeuchi Y Math Biosci Eng; 2019 May; 16(5):4660-4691. PubMed ID: 31499683 [TBL] [Abstract][Full Text] [Related]
20. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Xie Y; Chen L; Kang YM; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061921. PubMed ID: 18643314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]