These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
567 related articles for article (PubMed ID: 15158081)
41. Evidence for an axonal localization of the type 2 corticotropin-releasing factor receptor during postnatal development of the mouse cerebellum. Lee KH; Bishop GA; Tian JB; King JS Exp Neurol; 2004 May; 187(1):11-22. PubMed ID: 15081583 [TBL] [Abstract][Full Text] [Related]
42. Localization of metabotropic GABA receptor subunits GABAB1 and GABAB2 relative to synaptic sites in the rat developing cerebellum. Luján R; Shigemoto R Eur J Neurosci; 2006 Mar; 23(6):1479-90. PubMed ID: 16553611 [TBL] [Abstract][Full Text] [Related]
43. GABAergic and glutamatergic terminals differentially influence the organization of GABAergic synapses in rat cerebellar granule cells in vitro. Studler B; Fritschy JM; Brünig I Neuroscience; 2002; 114(1):123-33. PubMed ID: 12207960 [TBL] [Abstract][Full Text] [Related]
44. Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus. Freichel C; Potschka H; Ebert U; Brandt C; Löscher W Neuroscience; 2006 Sep; 141(4):2177-94. PubMed ID: 16797850 [TBL] [Abstract][Full Text] [Related]
45. Gamma-aminobutyric acid (GABA)-mediated neural connections in the Drosophila antennal lobe. Okada R; Awasaki T; Ito K J Comp Neurol; 2009 May; 514(1):74-91. PubMed ID: 19260068 [TBL] [Abstract][Full Text] [Related]
46. GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Uusisaari M; Knöpfel T Neuroscience; 2008 Oct; 156(3):537-49. PubMed ID: 18755250 [TBL] [Abstract][Full Text] [Related]
47. Laminar distribution and neuronal targets of GABAergic axon terminals in cat primary auditory cortex (AI). Prieto JJ; Peterson BA; Winer JA J Comp Neurol; 1994 Jun; 344(3):383-402. PubMed ID: 8063959 [TBL] [Abstract][Full Text] [Related]
48. GABA and synaptic inhibition of mouse cerebellum lacking glutamate decarboxylase 67. Obata K; Hirono M; Kume N; Kawaguchi Y; Itohara S; Yanagawa Y Biochem Biophys Res Commun; 2008 Jun; 370(3):429-33. PubMed ID: 18384748 [TBL] [Abstract][Full Text] [Related]
49. Distribution of postsynaptic GABA(A) receptor aggregates in the deep cerebellar nuclei of normal and mutant mice. Garin N; Hornung JP; Escher G J Comp Neurol; 2002 Jun; 447(3):210-7. PubMed ID: 11984816 [TBL] [Abstract][Full Text] [Related]
50. Developmental downregulation of GABAergic drive parallels formation of functional synapses in cultured mouse neocortical networks. Klueva J; Meis S; de Lima AD; Voigt T; Munsch T Dev Neurobiol; 2008 Jun; 68(7):934-49. PubMed ID: 18361402 [TBL] [Abstract][Full Text] [Related]
51. GABAergic neurons in the embryonic olfactory pit/vomeronasal organ: maintenance of functional GABAergic synapses in olfactory explants. Wray S; Fueshko SM; Kusano K; Gainer H Dev Biol; 1996 Dec; 180(2):631-45. PubMed ID: 8954733 [TBL] [Abstract][Full Text] [Related]
52. Embryonic development of GABAergic signaling in the mouse spinal trigeminal nucleus interpolaris. Kin H; Kim J; Shimizu-Okabe C; Okabe A; Takayama C Neurosci Lett; 2014 Apr; 566():221-5. PubMed ID: 24607929 [TBL] [Abstract][Full Text] [Related]
53. Normal formation of the postsynaptic elements of GABAergic synapses in the reeler cerebellum. Takayama C; Inoue Y Brain Res Dev Brain Res; 2003 Nov; 145(2):197-211. PubMed ID: 14604760 [TBL] [Abstract][Full Text] [Related]
54. GABA release from cerebellar stellate cells is developmentally regulated by presynaptic GABA(B) receptors in a target-cell-specific manner. Astori S; Luján R; Köhr G Eur J Neurosci; 2009 Aug; 30(4):551-9. PubMed ID: 19674089 [TBL] [Abstract][Full Text] [Related]
55. Morphological alterations in neocortical and cerebellar GABAergic neurons in a canine model of juvenile Batten disease. March PA; Wurzelmann S; Walkley SU Am J Med Genet; 1995 Jun; 57(2):204-12. PubMed ID: 7668331 [TBL] [Abstract][Full Text] [Related]
56. Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. López-Bendito G; Shigemoto R; Kulik A; Vida I; Fairén A; Luján R Hippocampus; 2004; 14(7):836-48. PubMed ID: 15382254 [TBL] [Abstract][Full Text] [Related]
57. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels. Babot Z; Cristòfol R; Suñol C Eur J Neurosci; 2005 Jan; 21(1):103-12. PubMed ID: 15654847 [TBL] [Abstract][Full Text] [Related]
58. Identification of glutamic acid decarboxylase gene and distribution of GABAergic nervous system in the planarian Dugesia japonica. Nishimura K; Kitamura Y; Umesono Y; Takeuchi K; Takata K; Taniguchi T; Agata K Neuroscience; 2008 Jun; 153(4):1103-14. PubMed ID: 18440152 [TBL] [Abstract][Full Text] [Related]
59. Brain-derived neurotrophic factor modulates GABAergic synaptic transmission by enhancing presynaptic glutamic acid decarboxylase 65 levels, promoting asynchronous release and reducing the number of activated postsynaptic receptors. Henneberger C; Kirischuk S; Grantyn R Neuroscience; 2005; 135(3):749-63. PubMed ID: 16154289 [TBL] [Abstract][Full Text] [Related]
60. GABAergic synapses in the brain identified with antisera to GABA and its synthesizing enzyme, glutamate decarboxylase. Ribak CE; Roberts RC J Electron Microsc Tech; 1990 May; 15(1):34-48. PubMed ID: 2187069 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]