BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 15158484)

  • 1. Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology.
    Maurel D; Kniazeff J; Mathis G; Trinquet E; Pin JP; Ansanay H
    Anal Biochem; 2004 Jun; 329(2):253-62. PubMed ID: 15158484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a time-resolved fluorescence resonance energy transfer assay (cell TR-FRET) for protein detection on intact cells.
    Lundin K; Blomberg K; Nordström T; Lindqvist C
    Anal Biochem; 2001 Dec; 299(1):92-7. PubMed ID: 11726189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of heterotrimeric G-protein and regulators of G-protein signaling interactions by time-resolved fluorescence resonance energy transfer.
    Leifert WR; Bailey K; Cooper TH; Aloia AL; Glatz RV; McMurchie EJ
    Anal Biochem; 2006 Aug; 355(2):201-12. PubMed ID: 16729956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A homogeneous time-resolved fluorescence detection of telomerase activity.
    Gabourdes M; Bourgine V; Mathis G; Bazin H; Alpha-Bazin B
    Anal Biochem; 2004 Oct; 333(1):105-13. PubMed ID: 15351286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor.
    Steinmeyer R; Harms GS
    Microsc Res Tech; 2009 Jan; 72(1):12-21. PubMed ID: 18785253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to G protein-coupled receptor oligomerization.
    Comps-Agrar L; Maurel D; Rondard P; Pin JP; Trinquet E; Prézeau L
    Methods Mol Biol; 2011; 756():201-14. PubMed ID: 21870227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Europium cryptate-tethered ribonucleotide for the labeling of RNA and its detection by time-resolved amplification of cryptate emission.
    Alpha-Bazin B; Bazin H; Boissy L; Mathis G
    Anal Biochem; 2000 Nov; 286(1):17-25. PubMed ID: 11038268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells.
    Galperin E; Verkhusha VV; Sorkin A
    Nat Methods; 2004 Dec; 1(3):209-17. PubMed ID: 15782196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous assay based on anti-Stokes' shift time-resolved fluorescence resonance energy-transfer measurement.
    Laitala V; Hemmilä I
    Anal Chem; 2005 Mar; 77(5):1483-7. PubMed ID: 15732934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem dye acceptor used to enhance upconversion fluorescence resonance energy transfer in homogeneous assays.
    Rantanen T; Päkkilä H; Jämsen L; Kuningas K; Ukonaho T; Lövgren T; Soukka T
    Anal Chem; 2007 Aug; 79(16):6312-8. PubMed ID: 17628044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores.
    Nikiforov TT; Beechem JM
    Anal Biochem; 2006 Oct; 357(1):68-76. PubMed ID: 16860286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A separation-free assay for the detection of mutations: combination of homogeneous time-resolved fluorescence and minisequencing.
    Lopez-Crapez E; Bazin H; Chevalier J; Trinquet E; Grenier J; Mathis G
    Hum Mutat; 2005 May; 25(5):468-75. PubMed ID: 15832307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved fluorescence resonance energy transfer kinase assays using physiological protein substrates: applications of terbium-fluorescein and terbium-green fluorescent protein fluorescence resonance energy transfer pairs.
    Riddle SM; Vedvik KL; Hanson GT; Vogel KW
    Anal Biochem; 2006 Sep; 356(1):108-16. PubMed ID: 16797477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous TR-FRET high-throughput screening assay for calcium-dependent multimerization of sorcin.
    Appelblom H; Nurmi J; Soukka T; Pasternack M; Penttilä KE; Lövgren T; Niemelä P
    J Biomol Screen; 2007 Sep; 12(6):842-8. PubMed ID: 17579123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive quantitative protein concentration method using luminescent resonance energy transfer on a layer-by-layer europium(III) chelate particle sensor.
    Härmä H; Dähne L; Pihlasalo S; Suojanen J; Peltonen J; Hänninen P
    Anal Chem; 2008 Dec; 80(24):9781-6. PubMed ID: 19012419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer to study receptor dimerization in living cells.
    Bader JE; Beck-Sickinger AG
    Methods Mol Biol; 2004; 259():335-52. PubMed ID: 15250503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent labeling of cell-surface proteins for in-vivo FRET studies.
    Meyer BH; Martinez KL; Segura JM; Pascoal P; Hovius R; George N; Johnsson K; Vogel H
    FEBS Lett; 2006 Mar; 580(6):1654-8. PubMed ID: 16497304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Förster resonance energy transfer methods for quantification of protein-protein interactions on microarrays.
    Schäferling M; Nagl S
    Methods Mol Biol; 2011; 723():303-20. PubMed ID: 21370073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct comparison of fluorescence- and bioluminescence-based resonance energy transfer methods for real-time monitoring of thrombin-catalysed proteolytic cleavage.
    Dacres H; Dumancic MM; Horne I; Trowell SC
    Biosens Bioelectron; 2009 Jan; 24(5):1164-70. PubMed ID: 18723336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A homogeneous single-label time-resolved fluorescence cAMP assay.
    Martikkala E; Rozwandowicz-Jansen A; Hänninen P; Petäjä-Repo U; Härmä H
    J Biomol Screen; 2011 Mar; 16(3):356-62. PubMed ID: 21343601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.