BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 15158717)

  • 1. Mutagenesis of the three conserved valine residues: consequence on the foldability of insulin.
    Guo ZY; Wang S; Tang YH; Feng YM
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):103-9. PubMed ID: 15158717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of the three conserved valine residues of insulin and a proposal of "isosteric residue".
    Guo ZY; Tang YH; Zhang Z; Feng YM
    IUBMB Life; 2001 Dec; 52(6):309-14. PubMed ID: 11895080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the absolutely conserved B8Gly to the foldability of insulin.
    Guo ZY; Tang YH; Wang S; Feng YM
    Biol Chem; 2003 May; 384(5):805-9. PubMed ID: 12817477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of the absolutely conserved B8Gly: consequence on foldability and activity of insulin.
    Guo ZY; Zhang Z; Jia XY; Tang YH; Feng YM
    Acta Biochim Biophys Sin (Shanghai); 2005 Oct; 37(10):673-9. PubMed ID: 16215634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of the conserved A16Leu to insulin foldability.
    Zhang ZJ; Wu L; Qiao ZS; Qiao MQ; Feng YM; Guo ZY
    Protein J; 2008 Apr; 27(3):192-6. PubMed ID: 18071885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a "nonfoldable" insulin: impaired folding efficiency despite native activity.
    Liu M; Wan ZL; Chu YC; Aladdin H; Klaproth B; Choquette M; Hua QX; Mackin RB; Rao JS; De Meyts P; Katsoyannis PG; Arvan P; Weiss MA
    J Biol Chem; 2009 Dec; 284(50):35259-72. PubMed ID: 19850922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide models of four possible insulin folding intermediates with two disulfides.
    Jia XY; Guo ZY; Wang Y; Xu Y; Duan SS; Feng YM
    Protein Sci; 2003 Nov; 12(11):2412-9. PubMed ID: 14573855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cysteine to serine substitutions in the two inter-chain disulfide bonds of insulin.
    Guo ZY; Feng YM
    Biol Chem; 2001 Mar; 382(3):443-8. PubMed ID: 11347892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The different energetic state of the intra A-chain/domain disulfide of insulin and insulin-like growth factor 1 is mainly controlled by their B-chain/domain.
    Guo ZY; Shen L; Feng YM
    Biochemistry; 2002 Aug; 41(34):10585-92. PubMed ID: 12186542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequences of B-chain/domain 1-10/1-9 of insulin and insulin-like growth factor 1 determine their different folding behavior.
    Chen Y; You Y; Jin R; Guo ZY; Feng YM
    Biochemistry; 2004 Jul; 43(28):9225-33. PubMed ID: 15248780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic Thr can replace the hydrophobic and absolutely conservative A3Val in insulin.
    Chen H; Feng YM
    Biochim Biophys Acta; 1998 Dec; 1429(1):69-73. PubMed ID: 9920385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refolding of amphioxus insulin-like peptide: implications of a bifurcating evolution of the different folding behavior of insulin and insulin-like growth factor 1.
    Wang S; Guo ZY; Shen L; Zhang YJ; Feng YM
    Biochemistry; 2003 Aug; 42(32):9687-93. PubMed ID: 12911310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sequence determinant causing different folding behaviors of insulin and insulin-like growth factor-1.
    Huang QL; Zhao J; Tang YH; Shao SQ; Xu GJ; Feng YM
    Biochemistry; 2007 Jan; 46(1):218-24. PubMed ID: 17198392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on receptor binding site of insulin: the hydrophobic B12Val can be substituted by hydrophilic thr.
    Wang QQ; Feng YM; Zhang YS
    Biochem Mol Biol Int; 1996 Aug; 39(6):1245-54. PubMed ID: 8876979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro evolution of amphioxus insulin-like peptide to mammalian insulin.
    Guo ZY; Shen L; Gu W; Wu AZ; Ma JG; Feng YM
    Biochemistry; 2002 Aug; 41(34):10603-7. PubMed ID: 12186544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of insulin at the edge of foldability and its medical implications.
    Rege NK; Liu M; Yang Y; Dhayalan B; Wickramasinghe NP; Chen YS; Rahimi L; Guo H; Haataja L; Sun J; Ismail-Beigi F; Phillips NB; Arvan P; Weiss MA
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29618-29628. PubMed ID: 33154160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved histidine in insulin is required for the foldability of human proinsulin: structure and function of an ALAB5 analog.
    Hua QX; Liu M; Hu SQ; Jia W; Arvan P; Weiss MA
    J Biol Chem; 2006 Aug; 281(34):24889-99. PubMed ID: 16728398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitution of an Internal Disulfide Bridge with a Diselenide Enhances both Foldability and Stability of Human Insulin.
    Weil-Ktorza O; Rege N; Lansky S; Shalev DE; Shoham G; Weiss MA; Metanis N
    Chemistry; 2019 Jun; 25(36):8513-8521. PubMed ID: 31012517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of C-terminal region of Staphylococcal nuclease for foldability, stability, and activity.
    Hirano S; Mihara K; Yamazaki Y; Kamikubo H; Imamoto Y; Kataoka M
    Proteins; 2002 Nov; 49(2):255-65. PubMed ID: 12211005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro folding/unfolding of insulin/single-chain insulin.
    Qiao ZS; Guo ZY; Feng YM
    Protein Pept Lett; 2006; 13(5):423-9. PubMed ID: 16800793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.