These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15158902)

  • 1. Influence of particle size and shape on flowability and compactibility of binary mixtures of paracetamol and microcrystalline cellulose.
    Kaerger JS; Edge S; Price R
    Eur J Pharm Sci; 2004 Jun; 22(2-3):173-9. PubMed ID: 15158902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Ceolus™ microcrystalline cellulose grades for the direct compression of enteric-coated pellets.
    Kucera SU; DiNunzio JC; Kaneko N; McGinity JW
    Drug Dev Ind Pharm; 2012 Mar; 38(3):341-50. PubMed ID: 21870908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of mechanical dry coating with magnesium stearate on flowability and compactibility of plastically deforming microcrystalline cellulose powders.
    Koskela J; Morton DAV; Stewart PJ; Juppo AM; Lakio S
    Int J Pharm; 2018 Feb; 537(1-2):64-72. PubMed ID: 29198809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between compactibility values and excipient cluster size using an in silico approach.
    Martínez L; Betz G; Villalobos R; Melgoza L; Young PM
    Drug Dev Ind Pharm; 2013 Feb; 39(2):374-81. PubMed ID: 22568747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.
    Mangal S; Gengenbach T; Millington-Smith D; Armstrong B; Morton DA; Larson I
    Eur J Pharm Biopharm; 2016 May; 102():168-77. PubMed ID: 26972416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitating direct compaction tableting of fine cohesive APIs using dry coated fine excipients: Effect of the excipient size and amount of coated silica.
    Lin Z; Cabello B; Kossor C; Davé R
    Int J Pharm; 2024 Jul; 660():124359. PubMed ID: 38901539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.
    Di Martino P; Joiris E; Martelli S
    Farmaco; 2004 Sep; 59(9):747-58. PubMed ID: 15337442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.
    Huang Z; Scicolone JV; Han X; Davé RN
    Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of agglomerated directly compressible diluent consisting of brittle and ductile materials.
    Gohel MC; Jogani PD; Bariya SE
    Pharm Dev Technol; 2003; 8(2):143-51. PubMed ID: 12760565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing of spherical crystalline particles via a novel solution atomization and crystallization by sonication (SAXS) technique.
    Kaerger JS; Price R
    Pharm Res; 2004 Feb; 21(2):372-81. PubMed ID: 15032321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approach to engineer paracetamol crystals by antisolvent crystallization technique in presence of various additives for direct compression.
    Kaialy W; Larhrib H; Chikwanha B; Shojaee S; Nokhodchi A
    Int J Pharm; 2014 Apr; 464(1-2):53-64. PubMed ID: 24480534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of granulating method on physical and mechanical properties, compression behavior, and compactibility of lactose and microcrystalline cellulose granules.
    Horisawa E; Danjo K; Sunada H
    Drug Dev Ind Pharm; 2000 Jun; 26(6):583-93. PubMed ID: 10826106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Shielding Effect of Microcrystalline Cellulose on Drug Nanocrystal Particles During Compaction.
    Liu Y; Xiao H; Xie J; Zhang Z; Ma Y; Yue P; Yang M
    AAPS PharmSciTech; 2018 Aug; 19(6):2488-2498. PubMed ID: 29948978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2314-26. PubMed ID: 16136545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Vitacel M80K as a new direct compressible vehicle.
    Nada AH; Graf E
    Eur J Pharm Biopharm; 1998 Nov; 46(3):347-53. PubMed ID: 9885308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of moisture on the compressibility and compactibility of sodium starch glycolate.
    Young PM; Edge S; Staniforth JN; Steele DF; Traini D; Price R
    Pharm Dev Technol; 2007; 12(2):217-22. PubMed ID: 17510894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of wax on compaction of microcrystalline cellulose beads made by extrusion and spheronization.
    Iloañusi NO; Schwartz JB
    Drug Dev Ind Pharm; 1998 Jan; 24(1):37-44. PubMed ID: 15605595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A compressibility and compactibility study of real tableting mixtures: the effect of granule particle size.
    Šantl M; Ilić I; Vrečer F; Baumgartner S
    Acta Pharm; 2012 Nov; 62(3):325-40. PubMed ID: 23470346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method to study the effect of blend flowability on the homogeneity of acetaminophen.
    Llusá M; Pingali K; Muzzio FJ
    Drug Dev Ind Pharm; 2013 Feb; 39(2):252-8. PubMed ID: 22494110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying surface energy derived cohesive-adhesive balance model in predicting the mixing, flow and compaction behaviour of interactive mixtures.
    Mangal S; Meiser F; Tan G; Gengenbach T; Morton DA; Larson I
    Eur J Pharm Biopharm; 2016 Jul; 104():110-6. PubMed ID: 27132984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.