These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15158964)

  • 1. Devices based on intelligent biopolymers for oral protein delivery.
    Peppas NA
    Int J Pharm; 2004 Jun; 277(1-2):11-7. PubMed ID: 15158964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of acrylic-based copolymers for oral insulin delivery.
    Foss AC; Goto T; Morishita M; Peppas NA
    Eur J Pharm Biopharm; 2004 Mar; 57(2):163-9. PubMed ID: 15018971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics.
    Nakamura K; Murray RJ; Joseph JI; Peppas NA; Morishita M; Lowman AM
    J Control Release; 2004 Mar; 95(3):589-99. PubMed ID: 15023469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives.
    Bartil T; Bounekhel M; Cedric C; Jeerome R
    Acta Pharm; 2007 Sep; 57(3):301-14. PubMed ID: 17878110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyacetal and poly(ortho ester)-poly(ethylene glycol) graft copolymer thermogels: preparation, hydrolysis and FITC-BSA release studies.
    Schacht E; Toncheva V; Vandertaelen K; Heller J
    J Control Release; 2006 Nov; 116(2):219-25. PubMed ID: 16962198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the cytotoxicity and insulin transport of acrylic-based copolymer protein delivery systems in contact with Caco-2 cultures.
    Foss AC; Peppas NA
    Eur J Pharm Biopharm; 2004 May; 57(3):447-55. PubMed ID: 15093592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Starch-based polymeric carriers for oral-insulin delivery.
    Mahkam M
    J Biomed Mater Res A; 2010 Mar; 92(4):1392-7. PubMed ID: 19353572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition.
    Madsen F; Peppas NA
    Biomaterials; 1999 Sep; 20(18):1701-8. PubMed ID: 10503971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug release from and hydrolytic degradation of a poly(ethylene glycol) grafted poly(3-hydroxyoctanoate).
    Kim HW; Chung CW; Hwang SJ; Rhee YH
    Int J Biol Macromol; 2005 Jul; 36(1-2):84-9. PubMed ID: 15936069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Smart' delivery systems for biomolecular therapeutics.
    Stayton PS; El-Sayed ME; Murthy N; Bulmus V; Lackey C; Cheung C; Hoffman AS
    Orthod Craniofac Res; 2005 Aug; 8(3):219-25. PubMed ID: 16022724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loading and mobility of spin-labeled insulin in physiologically responsive complexation hydrogels intended for oral administration.
    Besheer A; Wood KM; Peppas NA; Mäder K
    J Control Release; 2006 Mar; 111(1-2):73-80. PubMed ID: 16460830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of poly (ethylene glycol) molecular weight and microparticle size on oral insulin delivery from P(MAA-g-EG) microparticles.
    López JE; Peppas NA
    Drug Dev Ind Pharm; 2004 May; 30(5):497-504. PubMed ID: 15244085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of polymer ionization on the interaction with DNA in nonviral gene delivery systems.
    Rungsardthong U; Ehtezazi T; Bailey L; Armes SP; Garnett MC; Stolnik S
    Biomacromolecules; 2003; 4(3):683-90. PubMed ID: 12741785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery.
    Lo CL; Huang CK; Lin KM; Hsiue GH
    Biomaterials; 2007 Feb; 28(6):1225-35. PubMed ID: 17097728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release behaviour and biocompatibility of drug-loaded pH sensitive particles.
    Sipahigil O; Gürsoy A; Cakalağaoğlu F; Okar I
    Int J Pharm; 2006 Mar; 311(1-2):130-8. PubMed ID: 16427223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption.
    Morishita M; Goto T; Peppas NA; Joseph JI; Torjman MC; Munsick C; Nakamura K; Yamagata T; Takayama K; Lowman AM
    J Control Release; 2004 May; 97(1):115-24. PubMed ID: 15147809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs.
    Lin YH; Sonaje K; Lin KM; Juang JH; Mi FL; Yang HW; Sung HW
    J Control Release; 2008 Dec; 132(2):141-9. PubMed ID: 18817821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of polymeric micelles from brush polymer with poly(epsilon-caprolactone)-b-poly(ethylene glycol) side chains as drug carrier.
    Du JZ; Tang LY; Song WJ; Shi Y; Wang J
    Biomacromolecules; 2009 Aug; 10(8):2169-74. PubMed ID: 19722555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels.
    Tarasevich BJ; Gutowska A; Li XS; Jeong BM
    J Biomed Mater Res A; 2009 Apr; 89(1):248-54. PubMed ID: 18464255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.