These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 15158973)
1. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Hennink WE; De Jong SJ; Bos GW; Veldhuis TF; van Nostrum CF Int J Pharm; 2004 Jun; 277(1-2):99-104. PubMed ID: 15158973 [TBL] [Abstract][Full Text] [Related]
2. In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy. Bos GW; Jacobs JJ; Koten JW; Van Tomme S; Veldhuis T; van Nostrum CF; Den Otter W; Hennink WE Eur J Pharm Sci; 2004 Mar; 21(4):561-7. PubMed ID: 14998588 [TBL] [Abstract][Full Text] [Related]
3. Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. de Jong SJ; van Eerdenbrugh B; van Nostrum CF; Kettenes-van den Bosch JJ; Hennink WE J Control Release; 2001 Apr; 71(3):261-75. PubMed ID: 11295219 [TBL] [Abstract][Full Text] [Related]
4. Tissue reactions of in situ formed dextran hydrogels crosslinked by stereocomplex formation after subcutaneous implantation in rats. Bos GW; Hennink WE; Brouwer LA; den Otter W; Veldhuis TF; van Nostrum CF; van Luyn MJ Biomaterials; 2005 Jun; 26(18):3901-9. PubMed ID: 15626437 [TBL] [Abstract][Full Text] [Related]
5. Preparation and biological characteristics of recombinant human bone morphogenetic protein-2-loaded dextran-co-gelatin hydrogel microspheres, in vitro and in vivo studies. Chen F; Wu Z; Wang Q; Wu H; Zhang Y; Nie X; Jin Y Pharmacology; 2005 Nov; 75(3):133-44. PubMed ID: 16155372 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable dextran hydrogels for protein delivery applications. Van Tomme SR; Hennink WE Expert Rev Med Devices; 2007 Mar; 4(2):147-64. PubMed ID: 17359222 [TBL] [Abstract][Full Text] [Related]
7. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system. Molinos M; Carvalho V; Silva DM; Gama FM Biomacromolecules; 2012 Feb; 13(2):517-27. PubMed ID: 22288730 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous Formation of a Hydrogel Composed of Water-Soluble Phospholipid Polymers Grafted with Enantiomeric Oligo(lactic acid) Chains. Takami K; Watanabe J; Takai M; Ishihara K J Biomater Sci Polym Ed; 2011; 22(1-3):77-89. PubMed ID: 20546676 [TBL] [Abstract][Full Text] [Related]
9. In vitro release behavior of dextran-methacrylate hydrogels using doxorubicin and other model compounds. Kim SH; Chu CC J Biomater Appl; 2000 Jul; 15(1):23-46. PubMed ID: 10972158 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. de Jong SJ; De Smedt SC; Demeester J; van Nostrum CF; Kettenes-van den Bosch JJ; Hennink WE J Control Release; 2001 May; 72(1-3):47-56. PubMed ID: 11389984 [TBL] [Abstract][Full Text] [Related]
11. Genipin-crosslinked casein hydrogels for controlled drug delivery. Song F; Zhang LM; Yang C; Yan L Int J Pharm; 2009 May; 373(1-2):41-7. PubMed ID: 19429286 [TBL] [Abstract][Full Text] [Related]
12. Controlled release of curcumin from gelatin hydrogels by the molecular-weight modulation of an oxidized dextran cross-linker. Yan S; Wu S; Zhang J; Zhang S; Huang Y; Zhu H; Li Y; Qi B Food Chem; 2023 Aug; 418():135966. PubMed ID: 36948025 [TBL] [Abstract][Full Text] [Related]
13. Biodegradable hydrogels obtained by photocrosslinking of dextran and polyaspartamide derivatives. Pitarresi G; Palumbo FS; Giammona G; Casadei MA; Micheletti Moracci F Biomaterials; 2003 Oct; 24(23):4301-13. PubMed ID: 12853261 [TBL] [Abstract][Full Text] [Related]
14. Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery. Duffy CV; David L; Crouzier T Acta Biomater; 2015 Jul; 20():51-59. PubMed ID: 25818947 [TBL] [Abstract][Full Text] [Related]
15. DNA-crosslinked alginate and layered microspheres to modulate the release of encapsulated FITC-dextran. Turner D; Baldwin E; Russell K; Wells LA Eur J Pharm Biopharm; 2021 Jan; 158():313-322. PubMed ID: 33259898 [TBL] [Abstract][Full Text] [Related]
16. The Formation Mechanism of Hydrogels. Lu L; Yuan S; Wang J; Shen Y; Deng S; Xie L; Yang Q Curr Stem Cell Res Ther; 2018; 13(7):490-496. PubMed ID: 28606044 [TBL] [Abstract][Full Text] [Related]
17. Self-gelling hydrogels based on oppositely charged dextran microspheres. Van Tomme SR; van Steenbergen MJ; De Smedt SC; van Nostrum CF; Hennink WE Biomaterials; 2005 May; 26(14):2129-35. PubMed ID: 15576188 [TBL] [Abstract][Full Text] [Related]
18. Characterization of crosslinking effects on the physicochemical and drug diffusional properties of cationic hydrogels designed as bioactive urological biomaterials. Jones DS; Andrews GP; Gorman SP J Pharm Pharmacol; 2005 Oct; 57(10):1251-59. PubMed ID: 16259753 [TBL] [Abstract][Full Text] [Related]
19. Charged dextran hydrogels for post-loading and release of proteins. Schillemans JP; Hennink WE; van Nostrum CF J Control Release; 2010 Nov; 148(1):e82-3. PubMed ID: 21529645 [No Abstract] [Full Text] [Related]
20. Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery. Kang GD; Cheon SH; Khang G; Song SC Eur J Pharm Biopharm; 2006 Jul; 63(3):340-6. PubMed ID: 16527468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]