These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 15159077)
1. Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Yoon JJ; Song SH; Lee DS; Park TG Biomaterials; 2004 Nov; 25(25):5613-20. PubMed ID: 15159077 [TBL] [Abstract][Full Text] [Related]
2. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo HS; Lee EA; Yoon JJ; Park TG Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166 [TBL] [Abstract][Full Text] [Related]
4. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849 [TBL] [Abstract][Full Text] [Related]
5. [Effects of the surface of PLGA-(ASP-PEG) modified with RGD and K16-containing peptide on the adhesion and differentiation of bone marrow stromal cells]. Song Y; Huang H; Zheng Q; Liao Q Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1281-5, 1290. PubMed ID: 20095487 [TBL] [Abstract][Full Text] [Related]
6. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. Hu Y; Winn SR; Krajbich I; Hollinger JO J Biomed Mater Res A; 2003 Mar; 64(3):583-90. PubMed ID: 12579573 [TBL] [Abstract][Full Text] [Related]
7. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro. Kim SS; Park MS; Gwak SJ; Choi CY; Kim BS Tissue Eng; 2006 Oct; 12(10):2997-3006. PubMed ID: 17506618 [TBL] [Abstract][Full Text] [Related]
8. Surface immobilization of galactose onto aliphatic biodegradable polymers for hepatocyte culture. Yoon JJ; Nam YS; Kim JH; Park TG Biotechnol Bioeng; 2002 Apr; 78(1):1-10. PubMed ID: 11857274 [TBL] [Abstract][Full Text] [Related]
9. Effects of functionalization of PLGA-[Asp-PEG]n copolymer surfaces with Arg-Gly-Asp peptides, hydroxyapatite nanoparticles, and BMP-2-derived peptides on cell behavior in vitro. Pan H; Zheng Q; Yang S; Guo X J Biomed Mater Res A; 2014 Dec; 102(12):4526-35. PubMed ID: 24677783 [TBL] [Abstract][Full Text] [Related]
10. Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/nano-hydroxyapatite composites with chemical immobilization of Arg-Gly-Asp peptide and preliminary bone regeneration of mandibular defect thereof. Huang Y; Ren J; Ren T; Gu S; Tan Q; Zhang L; Lv K; Pan K; Jiang X J Biomed Mater Res A; 2010 Dec; 95(4):993-1003. PubMed ID: 20872750 [TBL] [Abstract][Full Text] [Related]
11. Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production. Jung HJ; Park K; Kim JJ; Lee JH; Han KO; Han DK Artif Organs; 2008 Dec; 32(12):981-9. PubMed ID: 19133029 [TBL] [Abstract][Full Text] [Related]
12. Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method. Yoon JJ; Kim JH; Park TG Biomaterials; 2003 Jun; 24(13):2323-9. PubMed ID: 12699670 [TBL] [Abstract][Full Text] [Related]
13. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of in vitro spermatogenesis using poly(D,L-lactic-co-glycolic acid) (PLGA)-based macroporous biodegradable scaffolds. Lee JH; Oh JH; Lee JH; Kim MR; Min CK J Tissue Eng Regen Med; 2011 Feb; 5(2):130-7. PubMed ID: 20603864 [TBL] [Abstract][Full Text] [Related]
15. A biodegradable vascularizing membrane: a feasibility study. Kaushiva A; Turzhitsky VM; Darmoc M; Backman V; Ameer GA Acta Biomater; 2007 Sep; 3(5):631-42. PubMed ID: 17507300 [TBL] [Abstract][Full Text] [Related]
16. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment. He F; Li J; Ye J Colloids Surf B Biointerfaces; 2013 Mar; 103():209-16. PubMed ID: 23201739 [TBL] [Abstract][Full Text] [Related]
17. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold. Wu L; Zhang H; Zhang J; Ding J Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446 [TBL] [Abstract][Full Text] [Related]
19. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
20. [Adhesion, proliferation and osteodifferentiation of bone mesenchymal stem cells on PLGA-[ASP-PEG] tri-bolck polymer scaffolds]. Duan ZX; Zheng QX; Guo XD; Bai Y; Yuan Q; Chen SG Zhongguo Gu Shang; 2008 Apr; 21(4):282-4. PubMed ID: 19102190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]