These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 15159551)
1. Suppressive activity of protease inhibitors from buckwheat seeds against human T-acute lymphoblastic leukemia cell lines. Park SS; Ohba H Appl Biochem Biotechnol; 2004 May; 117(2):65-74. PubMed ID: 15159551 [TBL] [Abstract][Full Text] [Related]
2. Primary structure and allergenic activity of trypsin inhibitors from the seeds of buckwheat (Fagopyrum esculentum Moench). Park SS; Abe K; Kimura M; Urisu A; Yamasaki N FEBS Lett; 1997 Jan; 400(1):103-7. PubMed ID: 9000522 [TBL] [Abstract][Full Text] [Related]
3. New protease inhibitors from buckwheat seeds: properties, partial amino acid sequences and possible biological role. Tsybina T; Dunaevsky Y; Musolyamov A; Egorov T; Larionova N; Popykina N; Belozersky M Biol Chem; 2004 May; 385(5):429-34. PubMed ID: 15196004 [TBL] [Abstract][Full Text] [Related]
4. Isolation and properties of anionic protease inhibitors from buckwheat seeds. Dunaevsky YE; Pavlukova EB; Belozersky MA Biochem Mol Biol Int; 1996 Sep; 40(1):199-208. PubMed ID: 8886286 [TBL] [Abstract][Full Text] [Related]
6. Amino acid sequence of the protease inhibitor BWI-4a from buckwheat seeds. Belozersky MA; Dunaevsky YE; Musolyamov AK; Egorov TA IUBMB Life; 2000 Apr; 49(4):273-6. PubMed ID: 10995028 [TBL] [Abstract][Full Text] [Related]
7. The anionic protease inhibitor BWI-1 from buckwheat seeds. Kinetic properties and possible biological role. Dunaevsky YE; Gladysheva IP; Pavlukova EB; Beliakova GA; Gladyshev DP; Papisova AI; Larionova NI; Belozersky MA Physiol Plant; 1997 Nov; 101(3):483-488. PubMed ID: 37340607 [TBL] [Abstract][Full Text] [Related]
8. Cationic inhibitors of serine proteinases from buckwheat seeds: study of their interaction with exogenous proteinases. Tsybina TA; Dunaevsky YE; Popykina NA; Larionova NI; Belozersky MA Biochemistry (Mosc); 2004 Apr; 69(4):441-4. PubMed ID: 15170382 [TBL] [Abstract][Full Text] [Related]
9. Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides. Oparin PB; Mineev KS; Dunaevsky YE; Arseniev AS; Belozersky MA; Grishin EV; Egorov TA; Vassilevski AA Biochem J; 2012 Aug; 446(1):69-77. PubMed ID: 22612157 [TBL] [Abstract][Full Text] [Related]
10. Complete amino acid sequence of the protease inhibitor BWI-4a from buckwheat seeds. Belozersky MA; Dunaevsky YE; Musolyamov AK; Egorov TA Biochemistry (Mosc); 2000 Oct; 65(10):1140-4. PubMed ID: 11092956 [TBL] [Abstract][Full Text] [Related]
11. Conformational changes of rBTI from buckwheat upon binding to trypsin: implications for the role of the P(8)' residue in the potato inhibitor I family. Wang L; Zhao F; Li M; Zhang H; Gao Y; Cao P; Pan X; Wang Z; Chang W PLoS One; 2011; 6(6):e20950. PubMed ID: 21698291 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of a protease inhibitor from Acacia karroo with a common combining loop and overlapping binding sites for chymotrypsin and trypsin. Patthy A; Molnár T; Porrogi P; Naudé R; Gráf L Arch Biochem Biophys; 2015 Jan; 565():9-16. PubMed ID: 25447841 [TBL] [Abstract][Full Text] [Related]
13. In vitro validation of gamma-secretase inhibitors alone or in combination with other anti-cancer drugs for the treatment of T-cell acute lymphoblastic leukemia. De Keersmaecker K; Lahortiga I; Mentens N; Folens C; Van Neste L; Bekaert S; Vandenberghe P; Odero MD; Marynen P; Cools J Haematologica; 2008 Apr; 93(4):533-42. PubMed ID: 18322257 [TBL] [Abstract][Full Text] [Related]
14. Complete amino acid sequence of the protease inhibitor from buckwheat seeds. Belozersky MA; Dunaevsky YE; Musolyamov AX; Egorov TA FEBS Lett; 1995 Sep; 371(3):264-6. PubMed ID: 7556606 [TBL] [Abstract][Full Text] [Related]
15. Point mutation of the proteasome beta5 subunit gene is an important mechanism of bortezomib resistance in bortezomib-selected variants of Jurkat T cell lymphoblastic lymphoma/leukemia line. Lü S; Yang J; Song X; Gong S; Zhou H; Guo L; Song N; Bao X; Chen P; Wang J J Pharmacol Exp Ther; 2008 Aug; 326(2):423-31. PubMed ID: 18502982 [TBL] [Abstract][Full Text] [Related]
16. Determination of drug synergism between the tyrosine kinase inhibitors NSC 680410 (adaphostin) and/or STI571 (imatinib mesylate, Gleevec) with cytotoxic drugs against human leukemia cell lines. Avramis IA; Laug WE; Sausville EA; Avramis VI Cancer Chemother Pharmacol; 2003 Oct; 52(4):307-18. PubMed ID: 12827297 [TBL] [Abstract][Full Text] [Related]
17. Trypsin-chymotrypsin inhibitors from Vigna mungo seeds. Cheung AH; Wong JH; Ng TB Protein Pept Lett; 2009; 16(3):277-84. PubMed ID: 19275741 [TBL] [Abstract][Full Text] [Related]
18. Independent heat stabilization of proteases associated with multiheaded inhibitors. Complexes of chymotrypsin, subtilisin and trypsin with chicken ovoinhibitor and with lima bean protease inhibitor. Zahnley JC Biochim Biophys Acta; 1980; 613(1):178-90. PubMed ID: 6990988 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial activity studies on a trypsin-chymotrypsin protease inhibitor obtained from potato. Kim JY; Park SC; Kim MH; Lim HT; Park Y; Hahm KS Biochem Biophys Res Commun; 2005 May; 330(3):921-7. PubMed ID: 15809084 [TBL] [Abstract][Full Text] [Related]
20. Modulation of ceramide metabolism in T-leukemia cell lines potentiates apoptosis induced by the cationic antimicrobial peptide bovine lactoferricin. Furlong SJ; Ridgway ND; Hoskin DW Int J Oncol; 2008 Mar; 32(3):537-44. PubMed ID: 18292930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]