BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 15159778)

  • 1. Optical tweezers applied to a microfluidic system.
    Enger J; Goksör M; Ramser K; Hagberg P; Hanstorp D
    Lab Chip; 2004 Jun; 4(3):196-200. PubMed ID: 15159778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter.
    Chen Y; Wu TH; Kung YC; Teitell MA; Chiou PY
    Analyst; 2013 Nov; 138(24):7308-15. PubMed ID: 23844418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optoelectronic Tweezers Micro-Well System for Highly Efficient Single-Cell Trapping, Dynamic Sorting, and Retrieval.
    Gan C; Zhang J; Chen B; Wang A; Xiong H; Zhao J; Wang C; Liang S; Feng L
    Small; 2024 Jun; 20(23):e2307329. PubMed ID: 38509856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Dual Optical Tweezers and Microfluidics for Single-Molecule Studies.
    Bianco PR
    J Vis Exp; 2022 Nov; (189):. PubMed ID: 36468706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach.
    Kumar De A; Goswami D
    Int Rev Phys Chem; 2011 Sep; 30(3):275-299. PubMed ID: 23814326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a comprehensive characterization of spatio-temporal dependence of light-induced electromagnetic forces in dielectric liquids.
    Astrath NGC; Bergmann EV; Anghinoni B; Flizikowski GAS; Novatski A; Jacinto C; Požar T; Kalin M; Malacarne LC; Baesso ML
    Sci Rep; 2024 Mar; 14(1):5595. PubMed ID: 38454075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based method for analyzing the optically trapped sperm rotation.
    Zhao J; Bai C; Zhang Z; Zhang Q
    Sci Rep; 2023 Aug; 13(1):12575. PubMed ID: 37537346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical tweezer and TIRF microscopy for single molecule manipulation of RNA/DNA nanostructures including their rubbery property and single molecule counting.
    Ghimire C; Guo P
    Biophys Rep; 2021 Dec; 7(6):449-474. PubMed ID: 37288367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-driven peristaltic pumping by an actuating splay-bend strip.
    Dradrach K; Zmyślony M; Deng Z; Priimagi A; Biggins J; Wasylczyk P
    Nat Commun; 2023 Apr; 14(1):1877. PubMed ID: 37015926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic Forces and Torques: From Dielectrophoresis to Optical Tweezers.
    Riccardi M; Martin OJF
    Chem Rev; 2023 Jan; 123(4):1680-711. PubMed ID: 36719985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-cost gel-filled microwell array device for screening marine microbial consortium.
    Duran C; Zhang S; Yang C; Falco ML; Cravo-Laureau C; Suzuki-Minakuchi C; Nojiri H; Duran R; Sassa F
    Front Microbiol; 2022; 13():1031439. PubMed ID: 36590440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time precision opto-control of chemical processes in live cells.
    Clark MG; Gonzalez GA; Luo Y; Aldana-Mendoza JA; Carlsen MS; Eakins G; Dai M; Zhang C
    Nat Commun; 2022 Jul; 13(1):4343. PubMed ID: 35896556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical tweezers across scales in cell biology.
    Favre-Bulle IA; Scott EK
    Trends Cell Biol; 2022 Nov; 32(11):932-946. PubMed ID: 35672197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A perspective on magnetic microfluidics: Towards an intelligent future.
    Zhang Y; Zhou A; Chen S; Lum GZ; Zhang X
    Biomicrofluidics; 2022 Jan; 16(1):011301. PubMed ID: 35069962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Brownian Microparticle Trajectories in Lab-on-a-Chip Devices with Time Varying Dielectrophoretic or Optical Forces.
    Zaman MA; Wu M; Padhy P; Jensen MA; Hesselink L; Davis RW
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A digital microfluidic system with 3D microstructures for single-cell culture.
    Zhai J; Li H; Wong AH; Dong C; Yi S; Jia Y; Mak PI; Deng CX; Martins RP
    Microsyst Nanoeng; 2020; 6():6. PubMed ID: 34567621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical characterization of vesicles and cells: A review.
    Morshed A; Karawdeniya BI; Bandara YMNDY; Kim MJ; Dutta P
    Electrophoresis; 2020 Apr; 41(7-8):449-470. PubMed ID: 31967658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap.
    Killian JL; Inman JT; Wang MD
    ACS Nano; 2018 Dec; 12(12):11963-11974. PubMed ID: 30457331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.