BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15159784)

  • 1. Electroosmotic flow with Joule heating effects.
    Xuan X; Xu B; Sinton D; Li D
    Lab Chip; 2004 Jun; 4(3):230-6. PubMed ID: 15159784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joule heating induced transient temperature field and its effects on electroosmosis in a microcapillary packed with microspheres.
    Kang Y; Yang C; Huang X
    Langmuir; 2005 Aug; 21(16):7598-607. PubMed ID: 16042499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows.
    Chein R; Yang YC; Lin Y
    Electrophoresis; 2006 Feb; 27(3):640-9. PubMed ID: 16380954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modeling of the Joule heating effect on electrokinetic flow focusing.
    Huang KD; Yang RJ
    Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of moderate Joule heating on electroosmotic flow velocity, retention, and efficiency in capillary electrochromatography.
    Chen G; Tallarek U; Seidel-Morgenstern A; Zhang Y
    J Chromatogr A; 2004 Jul; 1044(1-2):287-94. PubMed ID: 15354450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joule heating effects on separation efficiency in capillary zone electrophoresis with an initial voltage ramp.
    Xuan X; Hu G; Li D
    Electrophoresis; 2006 Aug; 27(16):3171-80. PubMed ID: 16850504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips.
    Gui L; Ren CL
    Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis.
    Xuan X; Li D
    J Chromatogr A; 2005 Feb; 1064(2):227-37. PubMed ID: 15739891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications.
    Kates B; Ren CL
    Electrophoresis; 2006 May; 27(10):1967-76. PubMed ID: 16703632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating.
    Ge Z; Wang W; Yang C
    Lab Chip; 2011 Apr; 11(7):1396-402. PubMed ID: 21331425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow-induced thermal effects on spatial DNA melting.
    Crews N; Ameel T; Wittwer C; Gale B
    Lab Chip; 2008 Nov; 8(11):1922-9. PubMed ID: 18941694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joule heating effects on electroosmotic entry flow.
    Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X
    Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: a closer look.
    Petersen NJ; Nikolajsen RP; Mogensen KB; Kutter JP
    Electrophoresis; 2004 Jan; 25(2):253-69. PubMed ID: 14743478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyphenated thermal field flow fractionation--capillary electrophoresis.
    Semenov SN
    J Mol Recognit; 1998; 11(1-6):157-62. PubMed ID: 10076830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and numerical analysis of temperature gradient focusing via Joule heating.
    Sommer GJ; Kim SM; Littrell RJ; Hasselbrink EF
    Lab Chip; 2007 Jul; 7(7):898-907. PubMed ID: 17594010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of induced pressure fields in electroosmotic flows through microchannels.
    Zhang Y; Gu XJ; Barber RW; Emerson DR
    J Colloid Interface Sci; 2004 Jul; 275(2):670-8. PubMed ID: 15178302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Joule heating in dispersive mixing effects in electrophoretic cells: hydrodynamic considerations.
    Bosse MA; Arce P
    Electrophoresis; 2000 Mar; 21(5):1018-25. PubMed ID: 10768789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.