BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 15160314)

  • 1. Spectroscopic investigation of the nickel-containing porphinoid cofactor F(430). Comparison of the free cofactor in the (+)1, (+)2 and (+)3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms.
    Duin EC; Signor L; Piskorski R; Mahlert F; Clay MD; Goenrich M; Thauer RK; Jaun B; Johnson MK
    J Biol Inorg Chem; 2004 Jul; 9(5):563-76. PubMed ID: 15160314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and computational characterization of the nickel-containing F430 cofactor of methyl-coenzyme M reductase.
    Craft JL; Horng YC; Ragsdale SW; Brunold TC
    J Biol Inorg Chem; 2004 Jan; 9(1):77-89. PubMed ID: 14663648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel oxidation states of F(430) cofactor in methyl-coenzyme M reductase.
    Craft JL; Horng YC; Ragsdale SW; Brunold TC
    J Am Chem Soc; 2004 Apr; 126(13):4068-9. PubMed ID: 15053571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray absorption and resonance Raman studies of methyl-coenzyme M reductase indicating that ligand exchange and macrocycle reduction accompany reductive activation.
    Tang Q; Carrington PE; Horng YC; Maroney MJ; Ragsdale SW; Bocian DF
    J Am Chem Soc; 2002 Nov; 124(44):13242-56. PubMed ID: 12405853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid ligand exchange in the MCRred1 form of methyl-coenzyme M reductase.
    Singh K; Horng YC; Ragsdale SW
    J Am Chem Soc; 2003 Mar; 125(9):2436-43. PubMed ID: 12603131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryoreduction of methyl-coenzyme M reductase: EPR characterization of forms, MCR(ox1) and MCR (red1).
    Telser J; Davydov R; Horng YC; Ragsdale SW; Hoffman BM
    J Am Chem Soc; 2001 Jun; 123(25):5853-60. PubMed ID: 11414817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination and geometry of the nickel atom in active methyl-coenzyme M reductase from Methanothermobacter marburgensis as detected by X-ray absorption spectroscopy.
    Duin EC; Cosper NJ; Mahlert F; Thauer RK; Scott RA
    J Biol Inorg Chem; 2003 Jan; 8(1-2):141-8. PubMed ID: 12459909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro interconversions among the EPR detectable MCR-red1 and MCR-red2 states.
    Mahlert F; Grabarse W; Kahnt J; Thauer RK; Duin EC
    J Biol Inorg Chem; 2002 Jan; 7(1-2):101-12. PubMed ID: 11862546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.
    Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U
    J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometric and electronic structures of the Ni(I) and methyl-Ni(III) intermediates of methyl-coenzyme M reductase.
    Sarangi R; Dey M; Ragsdale SW
    Biochemistry; 2009 Apr; 48(14):3146-56. PubMed ID: 19243132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: In vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2.
    Mahlert F; Bauer C; Jaun B; Thauer RK; Duin EC
    J Biol Inorg Chem; 2002 Apr; 7(4-5):500-13. PubMed ID: 11941508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues.
    Goenrich M; Mahlert F; Duin EC; Bauer C; Jaun B; Thauer RK
    J Biol Inorg Chem; 2004 Sep; 9(6):691-705. PubMed ID: 15365904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes.
    Thauer RK
    Biochemistry; 2019 Dec; 58(52):5198-5220. PubMed ID: 30951290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle.
    Harmer J; Finazzo C; Piskorski R; Ebner S; Duin EC; Goenrich M; Thauer RK; Reiher M; Schweiger A; Hinderberger D; Jaun B
    J Am Chem Soc; 2008 Aug; 130(33):10907-20. PubMed ID: 18652465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of alkyl-nickel adducts generated by reaction of methyl-coenzyme m reductase with brominated acids.
    Dey M; Kunz RC; Lyons DM; Ragsdale SW
    Biochemistry; 2007 Oct; 46(42):11969-78. PubMed ID: 17902704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin density and coenzyme M coordination geometry of the ox1 form of methyl-coenzyme M reductase: a pulse EPR study.
    Harmer J; Finazzo C; Piskorski R; Bauer C; Jaun B; Duin EC; Goenrich M; Thauer RK; Van Doorslaer S; Schweiger A
    J Am Chem Soc; 2005 Dec; 127(50):17744-55. PubMed ID: 16351103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active-site structures and the catalytic mechanism.
    Clay MD; Jenney FE; Hagedoorn PL; George GN; Adams MW; Johnson MK
    J Am Chem Soc; 2002 Feb; 124(5):788-805. PubMed ID: 11817955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the thioether product formed from the thiolytic cleavage of the alkyl-nickel bond in methyl-coenzyme M reductase.
    Kunz RC; Dey M; Ragsdale SW
    Biochemistry; 2008 Feb; 47(8):2661-7. PubMed ID: 18220418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-analogue-induced changes in the nickel-EPR spectrum of active methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum.
    Rospert S; Voges M; Berkessel A; Albracht SP; Thauer RK
    Eur J Biochem; 1992 Nov; 210(1):101-7. PubMed ID: 1332856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purified methyl-coenzyme-M reductase is activated when the enzyme-bound coenzyme F430 is reduced to the nickel(I) oxidation state by titanium(III) citrate.
    Goubeaud M; Schreiner G; Thauer RK
    Eur J Biochem; 1997 Jan; 243(1-2):110-4. PubMed ID: 9030728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.