These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 1516050)
1. Low mitochondrial proton leak due to high membrane cholesterol content and cytosolic creatine kinase as two features of the deviant bioenergetics of Ehrlich and AS30-D tumor cells. Baggetto LG; Clottes E; Vial C Cancer Res; 1992 Sep; 52(18):4935-41. PubMed ID: 1516050 [TBL] [Abstract][Full Text] [Related]
2. Proton-cation translocation in tumor cell mitochondria. Papa S; Capuano F; Capitanio N; Lorusso M; Galeotti T Cancer Res; 1983 Feb; 43(2):834-8. PubMed ID: 6848196 [TBL] [Abstract][Full Text] [Related]
3. Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability. Baggetto LG; Testa-Parussini R Arch Biochem Biophys; 1990 Dec; 283(2):241-8. PubMed ID: 2275543 [TBL] [Abstract][Full Text] [Related]
4. Protective effect of creatine against inhibition by methylglyoxal of mitochondrial respiration of cardiac cells. Roy SS; Biswas S; Ray M; Ray S Biochem J; 2003 Jun; 372(Pt 2):661-9. PubMed ID: 12605598 [TBL] [Abstract][Full Text] [Related]
5. Excess membrane cholesterol is not responsible for metabolic and bioenergetic changes in AS-30D hepatoma mitochondria. Dietzen DJ; Davis EJ Arch Biochem Biophys; 1994 Mar; 309(2):341-7. PubMed ID: 8135546 [TBL] [Abstract][Full Text] [Related]
6. Ethylazinphos interaction with membrane lipid organization induces increase of proton permeability and impairment of mitochondrial bioenergetic functions. Videira RA; Antunes-Madeira MC; Madeira VM Toxicol Appl Pharmacol; 2001 Sep; 175(3):209-16. PubMed ID: 11559019 [TBL] [Abstract][Full Text] [Related]
7. Transport of pyruvate in mitochondria from different tumor cells. Paradies G; Capuano F; Palombini G; Galeotti T; Papa S Cancer Res; 1983 Nov; 43(11):5068-71. PubMed ID: 6616443 [TBL] [Abstract][Full Text] [Related]
8. Rapid postnatal developmental changes in the passive proton permeability of the inner membrane in rat liver mitochondria. Valcarce C; Vitorica J; Satrústegui J; Cuezva JM J Biochem; 1990 Oct; 108(4):642-5. PubMed ID: 1963434 [TBL] [Abstract][Full Text] [Related]
9. Effect of chloro- and bromo-derivatives of isocrotonic acid of bioenergetic processes in Ehrlich ascites cells and isolated mitochondria. Miko M; Drobnica L; Jindra A; Semonský M Neoplasma; 1979; 26(4):449-60. PubMed ID: 522917 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial proton leak rates in the slow, oxidative myotomal muscle and liver of the endothermic shortfin mako shark (Isurus oxyrinchus) and the ectothermic blue shark (Prionace glauca) and leopard shark (Triakis semifasciata). Duong CA; Sepulveda CA; Graham JB; Dickson KA J Exp Biol; 2006 Jul; 209(Pt 14):2678-85. PubMed ID: 16809458 [TBL] [Abstract][Full Text] [Related]
11. Effect of lonidamine on the mitochondrial potential in situ in Ehrlich ascites tumor cells. Pulselli R; Amadio L; Fanciulli M; Floridi A Anticancer Res; 1996; 16(1):419-23. PubMed ID: 8615647 [TBL] [Abstract][Full Text] [Related]
12. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study. Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422 [TBL] [Abstract][Full Text] [Related]
13. Changes in membrane potential induced by local anesthetic bupivacaine on mitochondria within Ehrlich ascites tumor cells. Pulselli R; Arcuri E; Paggi MG; Floridi A Oncol Res; 1996; 8(7-8):267-71. PubMed ID: 8938789 [TBL] [Abstract][Full Text] [Related]
14. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria. Grimmsmann T; Rustenbeck I Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004 [TBL] [Abstract][Full Text] [Related]
15. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents. Custódio JB; Cardoso CM; Santos MS; Almeida LM; Vicente JA; Fernandes MA Toxicology; 2009 May; 259(1-2):18-24. PubMed ID: 19428939 [TBL] [Abstract][Full Text] [Related]
16. Effects of cumene hydroperoxide on the Ca(2+)-induced Ca2+ efflux from mitochondria and on the viability of hepatoma cells. Teplova VV; Kudin AP; Evtodienko YuV Membr Cell Biol; 1998; 11(5):641-51. PubMed ID: 9672882 [TBL] [Abstract][Full Text] [Related]
17. Proton leak in hepatocytes and liver mitochondria from archosaurs (crocodiles) and allometric relationships for ectotherms. Hulbert AJ; Else PL; Manolis SC; Brand MD J Comp Physiol B; 2002 Jul; 172(5):387-97. PubMed ID: 12122455 [TBL] [Abstract][Full Text] [Related]
18. Porin proteins in mitochondria from rat pancreatic islet cells and white adipocytes: identification and regulation of hexokinase binding by the sulfonylurea glimepiride. Müller G; Korndörfer A; Kornak U; Malaisse WJ Arch Biochem Biophys; 1994 Jan; 308(1):8-23. PubMed ID: 8311478 [TBL] [Abstract][Full Text] [Related]
19. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane. Kushnareva YE; Sokolove PM Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426 [TBL] [Abstract][Full Text] [Related]
20. [The possible role of the inner mitochondrial membrane in regulating oxidative phosphorylation in cells in vivo]. Vasil'eva EV; Belikova IuO; Liapina SA; Petrova LE; Kuznetsov AV; Perov NA; Clarke J; Saks VA Biokhimiia; 1993 Nov; 58(11):1742-54. PubMed ID: 8268311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]