BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27 related articles for article (PubMed ID: 15160611)

  • 1. Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters.
    Alexandrino M; Knief C; Lipski A
    Appl Environ Microbiol; 2001 Oct; 67(10):4796-804. PubMed ID: 11571187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida.
    Härtig C; Loffhagen N; Harms H
    Appl Environ Microbiol; 2005 Apr; 71(4):1915-22. PubMed ID: 15812020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Culture Conditions on Fatty Acid Profiles of Bacteria and Lipopolysaccharides of the Genus
    Mező E; Hartmann-Balogh F; Madarászné Horváth I; Bufa A; Marosvölgyi T; Kocsis B; Makszin L
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological changes in Rhodococcus ruber S103 immobilized on biobooms using low-cost media enhance stress tolerance and crude oil-degrading activity.
    Naloka K; Jaroonrunganan J; Woratecha N; Khondee N; Nojiri H; Pinyakong O
    Sci Rep; 2022 Jun; 12(1):10474. PubMed ID: 35729341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation.
    Zubkov IN; Nepomnyshchiy AP; Kondratyev VD; Sorokoumov PN; Sivak KV; Ramsay ES; Shishlyannikov SM
    J Microbiol; 2021 Dec; 59(12):1104-1111. PubMed ID: 34697784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens.
    Khare T; Anand U; Dey A; Assaraf YG; Chen ZS; Liu Z; Kumar V
    Front Pharmacol; 2021; 12():720726. PubMed ID: 34366872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Degradation of Naphthalene and Substituted Naphthalenes: Metabolic Diversity and Genomic Insight for Bioremediation.
    Mohapatra B; Phale PS
    Front Bioeng Biotechnol; 2021; 9():602445. PubMed ID: 33791281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-target Effects of Naphthalene on the Soil Microbial Biomass and Bacterial Communities in the Subalpine Forests of Western China.
    Lan L; Yang F; Zhang L; Yang W; Wu F; Xu Z; Liu Y; Yue K; Ni X; Li H; Liao S; Liu Y; Chen Y; Tan B
    Sci Rep; 2019 Jul; 9(1):9811. PubMed ID: 31285516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.
    Sakkas H; Gousia P; Economou V; Sakkas V; Petsios S; Papadopoulou C
    J Intercult Ethnopharmacol; 2016; 5(3):212-8. PubMed ID: 27366345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitation of Co-Metabolic Transformation and Degradation of Monochlorophenols by
    Nowak A; Mrozik A
    Water Air Soil Pollut; 2016; 227():83. PubMed ID: 26917860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane.
    Murínová S; Dercová K
    Int J Microbiol; 2014; 2014():873081. PubMed ID: 25057269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of essential oils on pathogenic bacteria.
    Nazzaro F; Fratianni F; De Martino L; Coppola R; De Feo V
    Pharmaceuticals (Basel); 2013 Nov; 6(12):1451-74. PubMed ID: 24287491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas.
    Mrozik A; Piotrowska-Seget Z; Łabuzek S
    Microbiol Res; 2004; 159(1):87-95. PubMed ID: 15160611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole cell-derived fatty acid profiles of Pseudomonas sp. JS150 during naphthalene degradation.
    Mrozik A; Labuzek S; Piotrowska-Seget Z
    Pol J Microbiol; 2005; 54(2):137-44. PubMed ID: 16209107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation.
    Mrozik A; Labuzek S; Piotrowska-Seget Z
    Microbiol Res; 2005; 160(2):149-57. PubMed ID: 15881832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Influence of salinity and temperature on fatty acid composition of Pseudomonas fluorescens GNP-OHP-3 membrane].
    Pucci GN; Härtig C; Pucci OH
    Rev Argent Microbiol; 2004; 36(1):6-15. PubMed ID: 15174743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naphthalene degradation by Pseudomonas sp. HOB1: in vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms.
    Pathak H; Kantharia D; Malpani A; Madamwar D
    J Hazard Mater; 2009 Jul; 166(2-3):1466-73. PubMed ID: 19167154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fatty acids composition of cellular lipids of the collected and newly isolated Pseudomonas lupini strains].
    Hvozdiak RI; Dankevych LA; Votselko SK; Holubets' OV
    Mikrobiol Z; 2005; 67(5):28-36. PubMed ID: 16396109
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.