These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 15161158)
21. Tracking mobility using human hair: What can we learn from lead and strontium isotopes? Vautour G; Poirier A; Widory D Sci Justice; 2015 Jan; 55(1):63-71. PubMed ID: 25577009 [TBL] [Abstract][Full Text] [Related]
22. National-scale distribution of strontium isotope ratios in environmental samples from South Korea and its implications for provenance studies. Choi HB; Lee KS; Park S; Jeong EK; Gautam MK; Shin WJ Chemosphere; 2023 Mar; 317():137895. PubMed ID: 36657573 [TBL] [Abstract][Full Text] [Related]
23. Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators. Faye S; Maloszewski P; Stichler W; Trimborn P; Cissé Faye S; Bécaye Gaye C Sci Total Environ; 2005 May; 343(1-3):243-59. PubMed ID: 15862849 [TBL] [Abstract][Full Text] [Related]
24. Testing Late Bronze Age mobility in southern Sweden in the light of a new multi-proxy strontium isotope baseline of Scania. Ladegaard-Pedersen P; Sabatini S; Frei R; Kristiansen K; Frei KM PLoS One; 2021; 16(4):e0250279. PubMed ID: 33882110 [TBL] [Abstract][Full Text] [Related]
25. Lead and strontium isotopes as indicators for mixing processes of waters in the former mine 'Himmelfahrt Fundgrube', Freiberg (Germany). Heidel C; Tichomirowa M; Matschullat J Isotopes Environ Health Stud; 2007 Dec; 43(4):339-54. PubMed ID: 18041623 [TBL] [Abstract][Full Text] [Related]
26. A strontium isoscape for the Conchucos region of highland Peru and its application to Andean archaeology. Washburn E; Nesbitt J; Ibarra B; Fehren-Schmitz L; Oelze VM PLoS One; 2021; 16(3):e0248209. PubMed ID: 33784347 [TBL] [Abstract][Full Text] [Related]
27. The Stable Isotopic Geochemistry of the Sulfur and Carbon Cycles in a Modern Karst Environment. Böttcher ME Isotopes Environ Health Stud; 1999 Sep; 35(1-2):39-61. PubMed ID: 29016210 [TBL] [Abstract][Full Text] [Related]
28. Spatial and temporal variability of ground water recharge in central Australia: a tracer approach. Harrington GA; Cook PG; Herczeg AL Ground Water; 2002; 40(5):518-27. PubMed ID: 12236265 [TBL] [Abstract][Full Text] [Related]
29. Using 14C and 3H to delineate a recharge 'window' into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia. Meredith K; Cendón DI; Pigois JP; Hollins S; Jacobsen G Sci Total Environ; 2012 Jan; 414():456-69. PubMed ID: 22104381 [TBL] [Abstract][Full Text] [Related]
30. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. Kaufman AJ; Hayes JM; Knoll AH; Germs GJ Precambrian Res; 1991; 49():301-27. PubMed ID: 11538647 [TBL] [Abstract][Full Text] [Related]
31. Fracture-Controlled Ground-Water Circulation and Well Siting in the Vicinity of Laramie, Wyoming. Huntoon PW; Lundy DA Ground Water; 1979 Sep; 17(5):463-469. PubMed ID: 29776300 [TBL] [Abstract][Full Text] [Related]
32. Strontium isotope study of coal utilization by-products interacting with environmental waters. Spivak-Birndorf LJ; Stewart BW; Capo RC; Chapman EC; Schroeder KT; Brubaker TM J Environ Qual; 2012; 41(1):144-54. PubMed ID: 22218183 [TBL] [Abstract][Full Text] [Related]
33. Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France). Santoni S; Huneau F; Garel E; Aquilina L; Vergnaud-Ayraud V; Labasque T; Celle-Jeanton H Sci Total Environ; 2016 Dec; 573():233-246. PubMed ID: 27565532 [TBL] [Abstract][Full Text] [Related]
34. Human impacts on karst groundwater contamination deduced by coupled nitrogen with strontium isotopes in the Nandong Underground River System in Yunan, China. Jiang Y; Wu Y; Yuan D Environ Sci Technol; 2009 Oct; 43(20):7676-83. PubMed ID: 19921878 [TBL] [Abstract][Full Text] [Related]
35. Evolution of Ground-Water Management Policy for Laramie, Wyoming, 1869-1979. Huntoon PW; Lundyb DA Ground Water; 1979 Sep; 17(5):470-475. PubMed ID: 29776298 [TBL] [Abstract][Full Text] [Related]
36. Isotope values of the bioavailable strontium in inland southwestern Sweden-A baseline for mobility studies. Blank M; Sjögren KG; Knipper C; Frei KM; Storå J PLoS One; 2018; 13(10):e0204649. PubMed ID: 30286158 [TBL] [Abstract][Full Text] [Related]
37. Use of NADP archive samples to determine the isotope composition of precipitation: characterizing the meteoric input function for use in ground water studies. Harvey FE Ground Water; 2001; 39(3):380-90. PubMed ID: 11341004 [TBL] [Abstract][Full Text] [Related]
38. A bioavailable strontium isoscape for Western Europe: A machine learning approach. Bataille CP; von Holstein ICC; Laffoon JE; Willmes M; Liu XM; Davies GR PLoS One; 2018; 13(5):e0197386. PubMed ID: 29847595 [TBL] [Abstract][Full Text] [Related]
39. Flooding of lignite mines: isotope variations and processes in a system influenced by saline groundwater. Trettin R; Glässer W; Lerche I; Seelig U; Treutler HC Isotopes Environ Health Stud; 2006 Jun; 42(2):159-79. PubMed ID: 16707317 [TBL] [Abstract][Full Text] [Related]
40. A first estimate of ground water ages for the deep aquifer of the Kathmandu Basin, Nepal, using the radioisotope chlorine-36. Cresswell RG; Bauld J; Jacobson G; Khadka MS; Jha MG; Shrestha MP; Regmi S Ground Water; 2001; 39(3):449-57. PubMed ID: 11341011 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]