BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15161254)

  • 1. Multistep energy transfer in single molecular photonic wires.
    Heilemann M; Tinnefeld P; Sanchez Mosteiro G; Garcia Parajo M; Van Hulst NF; Sauer M
    J Am Chem Soc; 2004 Jun; 126(21):6514-5. PubMed ID: 15161254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-based photonic wires.
    Heilemann M; Kasper R; Tinnefeld P; Sauer M
    J Am Chem Soc; 2006 Dec; 128(51):16864-75. PubMed ID: 17177437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled DNA photonic wire for long-range energy transfer.
    Hannestad JK; Sandin P; Albinsson B
    J Am Chem Soc; 2008 Nov; 130(47):15889-95. PubMed ID: 18975869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing intramolecular Förster resonance energy transfer in a naphthaleneimide-peryleneimide-terrylenediimide-based dendrimer by ensemble and single-molecule fluorescence spectroscopy.
    Cotlet M; Vosch T; Habuchi S; Weil T; Müllen K; Hofkens J; De Schryver F
    J Am Chem Soc; 2005 Jul; 127(27):9760-8. PubMed ID: 15998080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer in single-molecule photonic wires.
    García-Parajó MF; Hernando J; Sanchez Mosteiro G; Hoogenboom JP; van Dijk EM; van Hulst NF
    Chemphyschem; 2005 May; 6(5):819-27. PubMed ID: 15884064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-based molecular wires: multiple emission pathways of individual constructs.
    Sánchez-Mosteiro G; van Dijk EM; Hernando J; Heilemann M; Tinnefeld P; Sauer M; Koberlin F; Patting M; Wahl M; Erdmann R; van Hulst NF; García-Parajó MF
    J Phys Chem B; 2006 Dec; 110(51):26349-53. PubMed ID: 17181294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of molecular photonic wires based on multistep electronic excitation transfer.
    Tinnefeld P; Heilemann M; Sauer M
    Chemphyschem; 2005 Feb; 6(2):217-22. PubMed ID: 15751339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence coincidence spectroscopy for single-molecule fluorescence resonance energy-transfer measurements.
    Orte A; Clarke RW; Klenerman D
    Anal Chem; 2008 Nov; 80(22):8389-97. PubMed ID: 18855410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Following FRET through five energy transfer steps: spectroscopic photobleaching, recovery of spectra, and a sequential mechanism of FRET.
    Forde TS; Hanley QS
    Photochem Photobiol Sci; 2005 Aug; 4(8):609-16. PubMed ID: 16052267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single molecule spectroscopic investigation on conformational heterogeneity of directly linked zinc(II) porphyrin arrays.
    Park M; Cho S; Yoon ZS; Aratani N; Osuka A; Kim D
    J Am Chem Soc; 2005 Nov; 127(43):15201-6. PubMed ID: 16248662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled DNA photonic wire.
    Hannestad JK; Sandin P; Albinsson B
    Nucleic Acids Symp Ser (Oxf); 2008; (52):685. PubMed ID: 18776565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule fluorescence resonance energy transfer in nanopipets: improving distance resolution and concentration range.
    Vogelsang J; Doose S; Sauer M; Tinnefeld P
    Anal Chem; 2007 Oct; 79(19):7367-75. PubMed ID: 17822310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single-molecule Förster resonance energy transfer analysis of fluorescent DNA-protein conjugates for nanobiotechnology.
    Kukolka F; Müller BK; Paternoster S; Arndt A; Niemeyer CM; Bräuchle C; Lamb DC
    Small; 2006 Aug; 2(8-9):1083-9. PubMed ID: 17193172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral identification of specific photophysics of cy5 by means of ensemble and single molecule measurements.
    Huang Z; Ji D; Wang S; Xia A; Koberling F; Patting M; Erdmann R
    J Phys Chem A; 2006 Jan; 110(1):45-50. PubMed ID: 16392838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-specific detection based on fluorescence resonance energy transfer using a flexible water-soluble conjugated polymer.
    Lv W; Li N; Li Y; Li Y; Xia A
    J Am Chem Soc; 2006 Aug; 128(31):10281-7. PubMed ID: 16881659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicolor single-molecule spectroscopy with alternating laser excitation for the investigation of interactions and dynamics.
    Ross J; Buschkamp P; Fetting D; Donnermeyer A; Roth CM; Tinnefeld P
    J Phys Chem B; 2007 Jan; 111(2):321-6. PubMed ID: 17214479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helix-coil transition of a four-way DNA junction observed by multiple fluorescence parameters.
    Vámosi G; Clegg RM
    J Phys Chem B; 2008 Oct; 112(41):13136-48. PubMed ID: 18811195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye-DNA conjugates.
    Massey M; Algar WR; Krull UJ
    Anal Chim Acta; 2006 May; 568(1-2):181-9. PubMed ID: 17761259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.