BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15161254)

  • 41. Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: corrections due to nonideal transfer.
    Sabanayagam CR; Eid JS; Meller A
    J Chem Phys; 2005 Feb; 122(6):061103. PubMed ID: 15740360
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Applying spectral fingerprinting to the analysis of FRET images.
    Neher RA; Neher E
    Microsc Res Tech; 2004 Jun; 64(2):185-95. PubMed ID: 15352090
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A semiempirical approach to the intra-phycocyanin and inter-phycocyanin fluorescence resonance energy-transfer pathways in phycobilisomes.
    Matamala AR; Almonacid DE; Figueroa MF; Martínez-Oyanedel J; Bunster MC
    J Comput Chem; 2007 May; 28(7):1200-7. PubMed ID: 17299727
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single lanthanide-doped oxide nanoparticles as donors in fluorescence resonance energy transfer experiments.
    Casanova D; Giaume D; Gacoin T; Boilot JP; Alexandrou A
    J Phys Chem B; 2006 Oct; 110(39):19264-70. PubMed ID: 17004778
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Syntheses, photophysical properties, and application of through-bond energy-transfer cassettes for biotechnology.
    Jiao GS; Thoresen LH; Kim TG; Haaland WC; Gao F; Topp MR; Hochstrasser RM; Metzker ML; Burgess K
    Chemistry; 2006 Oct; 12(30):7816-26. PubMed ID: 16888738
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gold nanoparticle based FRET assay for the detection of DNA cleavage.
    Ray PC; Fortner A; Darbha GK
    J Phys Chem B; 2006 Oct; 110(42):20745-8. PubMed ID: 17048879
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis.
    Antonik M; Felekyan S; Gaiduk A; Seidel CA
    J Phys Chem B; 2006 Apr; 110(13):6970-8. PubMed ID: 16571010
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Single Molecule Polyphenylene-Vinylene Photonic Wire.
    Madsen M; Bakke MR; Gudnason DA; Sandahl AF; Hansen RA; Knudsen JB; Kodal ALB; Birkedal V; Gothelf KV
    ACS Nano; 2021 Jun; 15(6):9404-9411. PubMed ID: 33938214
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extending FRET cascades on linear DNA photonic wires.
    Spillmann CM; Buckhout-White S; Oh E; Goldman ER; Ancona MG; Medintz IL
    Chem Commun (Camb); 2014 Jul; 50(55):7246-9. PubMed ID: 24752334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increased Transfer Efficiency from Molecular Photonic Wires on Solid Substrates and Cryogenic Conditions.
    Díaz SA; Oliver SM; Hastman DA; Medintz IL; Vora PM
    J Phys Chem Lett; 2018 Jul; 9(13):3654-3659. PubMed ID: 29893572
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular binoculars: how to spatially resolve environmental fluctuations by following two or more single-molecule spectral trails at a time.
    Lubchenko V; Silbey RJ
    J Phys Chem B; 2013 Oct; 117(42):12734-41. PubMed ID: 23607646
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extracting spectral dynamics from single chromophores in solution.
    Marshall LF; Cui J; Brokmann X; Bawendi MG
    Phys Rev Lett; 2010 Jul; 105(5):053005. PubMed ID: 20867912
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hot luminescence from single-molecule chromophores electrically and mechanically self-decoupled by tripodal scaffolds.
    Rai V; Balzer N; Derenbach G; Holzer C; Mayor M; Wulfhekel W; Gerhard L; Valášek M
    Nat Commun; 2023 Dec; 14(1):8253. PubMed ID: 38086917
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energy transfer in FRET pairs in a supramolecular hydrogel template.
    Laishram R; Maitra U
    Chem Commun (Camb); 2022 Mar; 58(19):3162-3165. PubMed ID: 35170595
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Energy-transfer properties of a [2.2]paracyclophane-based through-space dimer.
    Morisaki Y; Kawakami N; Nakano T; Chujo Y
    Chemistry; 2013 Dec; 19(52):17715-8. PubMed ID: 24259034
    [No Abstract]   [Full Text] [Related]  

  • 56. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards.
    Mathur D; Díaz SA; Hildebrandt N; Pensack RD; Yurke B; Biaggne A; Li L; Melinger JS; Ancona MG; Knowlton WB; Medintz IL
    Chem Soc Rev; 2023 Nov; 52(22):7848-7948. PubMed ID: 37872857
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine.
    Zhou X; Lin S; Yan H
    J Nanobiotechnology; 2022 Jun; 20(1):257. PubMed ID: 35658974
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light-Harvesting Crystals Formed from BODIPY-Proline Biohybrid Conjugates: Antenna Effects and Excitonic Coupling.
    Waly SM; Karlsson JKG; Waddell PG; Benniston AC; Harriman A
    J Phys Chem A; 2022 Mar; 126(9):1530-1541. PubMed ID: 35230124
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modulation of Aggregation-Induced Emission by Excitation Energy Transfer: Design and Application.
    Dong L; Peng HQ; Niu LY; Yang QZ
    Top Curr Chem (Cham); 2021 Apr; 379(3):18. PubMed ID: 33825076
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Programming Structured DNA Assemblies to Probe Biophysical Processes.
    Wamhoff EC; Banal JL; Bricker WP; Shepherd TR; Parsons MF; Veneziano R; Stone MB; Jun H; Wang X; Bathe M
    Annu Rev Biophys; 2019 May; 48():395-419. PubMed ID: 31084582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.