These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 1516136)

  • 21. Lack of Drosophila cytoskeletal tropomyosin affects head morphogenesis and the accumulation of oskar mRNA required for germ cell formation.
    Tetzlaff MT; Jäckle H; Pankratz MJ
    EMBO J; 1996 Mar; 15(6):1247-54. PubMed ID: 8635457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A late phase of Oskar accumulation is crucial for posterior patterning of the Drosophila embryo, and is blocked by ectopic expression of Bruno.
    Snee MJ; Harrison D; Yan N; Macdonald PM
    Differentiation; 2007 Mar; 75(3):246-55. PubMed ID: 17359300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drosophila virilis oskar transgenes direct body patterning but not pole cell formation or maintenance of mRNA localization in D. melanogaster.
    Webster PJ; Suen J; Macdonald PM
    Development; 1994 Jul; 120(7):2027-37. PubMed ID: 7925007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells.
    Forbes A; Lehmann R
    Development; 1998 Feb; 125(4):679-90. PubMed ID: 9435288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. aubergine enhances oskar translation in the Drosophila ovary.
    Wilson JE; Connell JE; Macdonald PM
    Development; 1996 May; 122(5):1631-9. PubMed ID: 8625849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PKA-R1 spatially restricts Oskar expression for Drosophila embryonic patterning.
    Yoshida S; Müller HA; Wodarz A; Ephrussi A
    Development; 2004 Mar; 131(6):1401-10. PubMed ID: 14993189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role for mRNA localization in translational activation but not spatial restriction of nanos RNA.
    Bergsten SE; Gavis ER
    Development; 1999 Feb; 126(4):659-69. PubMed ID: 9895314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The molecular chaperone Hsp90 is required for mRNA localization in Drosophila melanogaster embryos.
    Song Y; Fee L; Lee TH; Wharton RP
    Genetics; 2007 Aug; 176(4):2213-22. PubMed ID: 17565952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos.
    Murata Y; Wharton RP
    Cell; 1995 Mar; 80(5):747-56. PubMed ID: 7889568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline.
    Kadyrova LY; Habara Y; Lee TH; Wharton RP
    Development; 2007 Apr; 134(8):1519-27. PubMed ID: 17360772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Drosophila hnRNP M homolog Rumpelstiltskin regulates nanos mRNA localization.
    Jain RA; Gavis ER
    Development; 2008 Mar; 135(5):973-82. PubMed ID: 18234721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drosophila tudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning.
    Thomson T; Lasko P
    Genesis; 2004 Nov; 40(3):164-70. PubMed ID: 15495201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction of germ cell formation by oskar.
    Ephrussi A; Lehmann R
    Nature; 1992 Jul; 358(6385):387-92. PubMed ID: 1641021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fat facets gene is required for Drosophila eye and embryo development.
    Fischer-Vize JA; Rubin GM; Lehmann R
    Development; 1992 Dec; 116(4):985-1000. PubMed ID: 1295747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Barentsz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole.
    van Eeden FJ; Palacios IM; Petronczki M; Weston MJ; St Johnston D
    J Cell Biol; 2001 Aug; 154(3):511-23. PubMed ID: 11481346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Nanos gradient in Drosophila embryos is generated by translational regulation.
    Dahanukar A; Wharton RP
    Genes Dev; 1996 Oct; 10(20):2610-20. PubMed ID: 8895662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanos suppresses somatic cell fate in Drosophila germ line.
    Hayashi Y; Hayashi M; Kobayashi S
    Proc Natl Acad Sci U S A; 2004 Jul; 101(28):10338-42. PubMed ID: 15240884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A conserved 90 nucleotide element mediates translational repression of nanos RNA.
    Gavis ER; Lunsford L; Bergsten SE; Lehmann R
    Development; 1996 Sep; 122(9):2791-800. PubMed ID: 8787753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The actin-binding protein Lasp promotes Oskar accumulation at the posterior pole of the Drosophila embryo.
    Suyama R; Jenny A; Curado S; Pellis-van Berkel W; Ephrussi A
    Development; 2009 Jan; 136(1):95-105. PubMed ID: 19036801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of the posterior determinant Nanos is spatially restricted by a novel cotranslational regulatory mechanism.
    Clark IE; Wyckoff D; Gavis ER
    Curr Biol; 2000 Oct; 10(20):1311-4. PubMed ID: 11069116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.