These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Relationship between scanning laser polarimetry with enhanced corneal compensation and with variable corneal compensation. Kim KH; Choi J; Lee CH; Cho BJ; Kook MS Korean J Ophthalmol; 2008 Mar; 22(1):18-25. PubMed ID: 18323701 [TBL] [Abstract][Full Text] [Related]
6. Scanning laser polarimetry of the retinal nerve fiber layer in perimetrically unaffected eyes of glaucoma patients. Reus NJ; Lemij HG Ophthalmology; 2004 Dec; 111(12):2199-203. PubMed ID: 15582074 [TBL] [Abstract][Full Text] [Related]
7. Relationship between patterns of visual field loss and retinal nerve fiber layer thickness measurements. Hoffmann EM; Medeiros FA; Sample PA; Boden C; Bowd C; Bourne RR; Zangwill LM; Weinreb RN Am J Ophthalmol; 2006 Mar; 141(3):463-471. PubMed ID: 16490491 [TBL] [Abstract][Full Text] [Related]
8. Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by optical coherence tomography. Ajtony C; Balla Z; Somoskeoy S; Kovacs B Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):258-63. PubMed ID: 17197541 [TBL] [Abstract][Full Text] [Related]
10. Structure-function relationship is stronger with enhanced corneal compensation than with variable corneal compensation in scanning laser polarimetry. Mai TA; Reus NJ; Lemij HG Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1651-8. PubMed ID: 17389496 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps. Christopher M; Bowd C; Belghith A; Goldbaum MH; Weinreb RN; Fazio MA; Girkin CA; Liebmann JM; Zangwill LM Ophthalmology; 2020 Mar; 127(3):346-356. PubMed ID: 31718841 [TBL] [Abstract][Full Text] [Related]
12. Structure-function relationships between spectral-domain OCT and standard achromatic perimetry. Nilforushan N; Nassiri N; Moghimi S; Law SK; Giaconi J; Coleman AL; Caprioli J; Nouri-Mahdavi K Invest Ophthalmol Vis Sci; 2012 May; 53(6):2740-8. PubMed ID: 22447869 [TBL] [Abstract][Full Text] [Related]
13. Relationship between retinal nerve fibre layer measurements and retinal sensitivity by scanning laser polarimetry with variable and enhanced corneal compensation. Choi J; Kim KH; Lee CH; Cho H; Sung KR; Choi JY; Cho BJ; Kook MS Br J Ophthalmol; 2008 Jul; 92(7):906-11. PubMed ID: 18577640 [TBL] [Abstract][Full Text] [Related]
14. Relationships between standard automated perimetry, HRT confocal scanning laser ophthalmoscopy, and GDx VCC scanning laser polarimetry. Reus NJ; Lemij HG Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4182-8. PubMed ID: 16249497 [TBL] [Abstract][Full Text] [Related]
15. Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Sehi M; Ume S; Greenfield DS Invest Ophthalmol Vis Sci; 2007 May; 48(5):2099-104. PubMed ID: 17460267 [TBL] [Abstract][Full Text] [Related]
16. Comparing measurements of retinal nerve fiber layer thickness obtained on scanning laser polarimetry with fixed and variable corneal compensator. Da Pozzo S; Iacono P; Marchesan R; Vattovani O; Ravalico G Eur J Ophthalmol; 2005; 15(2):239-45. PubMed ID: 15812767 [TBL] [Abstract][Full Text] [Related]
18. Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects. Kook MS; Cho HS; Seong M; Choi J Ophthalmology; 2005 Nov; 112(11):1970-8. PubMed ID: 16185765 [TBL] [Abstract][Full Text] [Related]
19. Quantitative assessment of structural damage in eyes with localized visual field abnormalities. Bagga H; Greenfield DS Am J Ophthalmol; 2004 May; 137(5):797-805. PubMed ID: 15126142 [TBL] [Abstract][Full Text] [Related]