These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 15161864)

  • 1. Retinal microvascular surgery: a feasibility study.
    Tsilimbaris MK; Lit ES; D'Amico DJ
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):1963-8. PubMed ID: 15161864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study of retinal endovascular surgery with a microfabricated needle.
    Kadonosono K; Arakawa A; Yamane S; Uchio E; Yanagi Y
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5790-3. PubMed ID: 21659311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility study on retinal vascular bypass surgery in isolated arterially perfused caprine eye model.
    Chen Y; Wu W; Zhang X; Fan W; Shen L
    Eye (Lond); 2011 Nov; 25(11):1499-503. PubMed ID: 21921946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bypassing occluded retinal main vessel segments in isolated arterially perfused caprine eyes.
    Shen LJ; Chen YQ; Wei LL; Wu W; Wang ZY; Liu Y; Lu F; Qu J
    Curr Eye Res; 2009 Jun; 34(6):415-20. PubMed ID: 19899975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Retinal Vein Bypass Surgery in a Porcine Model.
    Shen LJ; Chen YQ; Cheng D; Zhang C; Jiang L; Hong M; Kang QY
    Curr Eye Res; 2016; 41(1):79-87. PubMed ID: 25549290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility study on robot-assisted retinal vascular bypass surgery in an ex vivo porcine model.
    Chen YQ; Tao JW; Li L; Mao JB; Zhu CT; Lao JM; Yang Y; Shen LJ
    Acta Ophthalmol; 2017 Sep; 95(6):e462-e467. PubMed ID: 28597519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative robot assistant for vitreoretinal microsurgery: development of the RVRMS and feasibility studies in an animal model.
    Chen YQ; Tao JW; Su LY; Li L; Zhao SX; Yang Y; Shen LJ
    Graefes Arch Clin Exp Ophthalmol; 2017 Jun; 255(6):1167-1171. PubMed ID: 28389702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and evaluation of a new bioelectrical impedance sensor for micro-surgery: application to retinal vein cannulation.
    Schoevaerdts L; Esteveny L; Gijbels A; Smits J; Reynaerts D; Vander Poorten E
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):311-320. PubMed ID: 30141126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of surgical approaches to retinal vascular occlusions.
    Tang WM; Han DP
    Arch Ophthalmol; 2000 Jan; 118(1):138-43. PubMed ID: 10636435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal vein cannulation with prolonged infusion of tissue plasminogen activator (t-PA) for the treatment of experimental retinal vein occlusion in dogs.
    Tameesh MK; Lakhanpal RR; Fujii GY; Javaheri M; Shelley TH; D'Anna S; Barnes AC; Margalit E; Farah M; De Juan E; Humayun MS
    Am J Ophthalmol; 2004 Nov; 138(5):829-39. PubMed ID: 15531319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vessel anastomosis using a venous cuff and two sutures: an experimental study in rat femoral and epigastric vessels.
    Nakayama Y; Soeda S; Kiyosawa T
    J Reconstr Microsurg; 1988 Jul; 4(4):335-9. PubMed ID: 3050066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [From microsurgery to supermicrosurgery: Experimental feasibility study and perspectives].
    Qassemyar Q; Sinna R
    Ann Chir Plast Esthet; 2011 Dec; 56(6):518-27. PubMed ID: 21237545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EyeSLAM: Real-time simultaneous localization and mapping of retinal vessels during intraocular microsurgery.
    Braun D; Yang S; Martel JN; Riviere CN; Becker BC
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28719002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model.
    Ueta T; Yamaguchi Y; Shirakawa Y; Nakano T; Ideta R; Noda Y; Morita A; Mochizuki R; Sugita N; Mitsuishi M; Tamaki Y
    Ophthalmology; 2009 Aug; 116(8):1538-43, 1543.e1-2. PubMed ID: 19545902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method to catheterize a femoral artery in mice using a nylon suture as a 'guide wire'.
    Fukui S; Nawshiro H; Wada K; Shima K; Hallenbeck JM
    Neurol Res; 2001 Sep; 23(6):655-6. PubMed ID: 11547938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic ocular surgery.
    Tsirbas A; Mango C; Dutson E
    Br J Ophthalmol; 2007 Jan; 91(1):18-21. PubMed ID: 17020903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KTP-532 laser-assisted microvascular anastomosis (experimental animal study).
    Lorincz BB; Kálmán E; Gerlinger I
    Eur Arch Otorhinolaryngol; 2007 Jul; 264(7):823-8. PubMed ID: 17453225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and novel technique for training in microvascular suturing in a rat model.
    Kao JY; Chen YR; Chang SS
    Asian J Surg; 2019 Jan; 42(1):409-413. PubMed ID: 30097397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsurgical anastomosis with the 'PCA' technique.
    Cigna E; Curinga G; Bistoni G; Spalvieri C; Tortorelli G; Scuderi N
    J Plast Reconstr Aesthet Surg; 2008 Jul; 61(7):762-6. PubMed ID: 18468969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraluminal endoscopic evaluation of microvascular anastomosis.
    Schoffl H; Froschauer SM; Hainisch R; Hager D; Schnelzer R; Kwasny O; Huemer GM
    J Plast Reconstr Aesthet Surg; 2008; 61(4):388-92. PubMed ID: 17988970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.