These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 15161870)
1. Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat. Yu DY; Cringle S; Valter K; Walsh N; Lee D; Stone J Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):2013-9. PubMed ID: 15161870 [TBL] [Abstract][Full Text] [Related]
2. Photoreceptor degeneration and loss of retinal function in the C57BL/6-C2J mouse. Bravo-Nuevo A; Walsh N; Stone J Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):2005-12. PubMed ID: 15161869 [TBL] [Abstract][Full Text] [Related]
3. Reversal of functional loss in the P23H-3 rat retina by management of ambient light. Jozwick C; Valter K; Stone J Exp Eye Res; 2006 Nov; 83(5):1074-80. PubMed ID: 16822506 [TBL] [Abstract][Full Text] [Related]
5. Multiple vulnerability of photoreceptors to mesopic ambient light in the P23H transgenic rat. Walsh N; van Driel D; Lee D; Stone J Brain Res; 2004 Jul; 1013(2):194-203. PubMed ID: 15193529 [TBL] [Abstract][Full Text] [Related]
6. Time course of neurotrophic factor upregulation and retinal protection against light-induced damage after optic nerve section. Valter K; Bisti S; Gargini C; Di Loreto S; Maccarone R; Cervetto L; Stone J Invest Ophthalmol Vis Sci; 2005 May; 46(5):1748-54. PubMed ID: 15851578 [TBL] [Abstract][Full Text] [Related]
7. P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Machida S; Kondo M; Jamison JA; Khan NW; Kononen LT; Sugawara T; Bush RA; Sieving PA Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3200-9. PubMed ID: 10967084 [TBL] [Abstract][Full Text] [Related]
8. Optimising the structure and function of the adult P23H-3 retina by light management in the juvenile and adult. Valter K; Kirk DK; Stone J Exp Eye Res; 2009 Dec; 89(6):1003-11. PubMed ID: 19729008 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory peptide of mitochondrial μ-calpain protects against photoreceptor degeneration in rhodopsin transgenic S334ter and P23H rats. Ozaki T; Ishiguro S; Hirano S; Baba A; Yamashita T; Tomita H; Nakazawa M PLoS One; 2013; 8(8):e71650. PubMed ID: 23951212 [TBL] [Abstract][Full Text] [Related]
10. Characterization of photoreceptor degeneration in the rhodopsin P23H transgenic rat line 2 using optical coherence tomography. Monai N; Yamauchi K; Tanabu R; Gonome T; Ishiguro SI; Nakazawa M PLoS One; 2018; 13(3):e0193778. PubMed ID: 29522537 [TBL] [Abstract][Full Text] [Related]
11. Transplanted olfactory ensheathing cells reduce retinal degeneration in Royal College of Surgeons rats. Huo SJ; Li YC; Xie J; Li Y; Raisman G; Zeng YX; He JR; Weng CH; Yin ZQ Curr Eye Res; 2012 Aug; 37(8):749-58. PubMed ID: 22691022 [TBL] [Abstract][Full Text] [Related]
12. Morphological, functional and gene expression analysis of the hyperoxic mouse retina. Natoli R; Valter K; Chrysostomou V; Stone J; Provis J Exp Eye Res; 2011 Apr; 92(4):306-14. PubMed ID: 21219899 [TBL] [Abstract][Full Text] [Related]
13. Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Liang FQ; Aleman TS; Dejneka NS; Dudus L; Fisher KJ; Maguire AM; Jacobson SG; Bennett J Mol Ther; 2001 Nov; 4(5):461-72. PubMed ID: 11708883 [TBL] [Abstract][Full Text] [Related]
14. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Parfitt DA; Aguila M; McCulley CH; Bevilacqua D; Mendes HF; Athanasiou D; Novoselov SS; Kanuga N; Munro PM; Coffey PJ; Kalmar B; Greensmith L; Cheetham ME Cell Death Dis; 2014 May; 5(5):e1236. PubMed ID: 24853414 [TBL] [Abstract][Full Text] [Related]
15. Remote Ischemic Preconditioning Protects Retinal Photoreceptors: Evidence From a Rat Model of Light-Induced Photoreceptor Degeneration. Brandli A; Johnstone DM; Stone J Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5302-5313. PubMed ID: 27727393 [TBL] [Abstract][Full Text] [Related]
16. Activation of ganglion cells in wild-type and P23H rat retinas with a small subretinal electrode. Jensen RJ Exp Eye Res; 2012 Jun; 99():71-7. PubMed ID: 22542904 [TBL] [Abstract][Full Text] [Related]
17. Retinal cAMP levels during the progression of retinal degeneration in rhodopsin P23H and S334ter transgenic rats. Traverso V; Bush RA; Sieving PA; Deretic D Invest Ophthalmol Vis Sci; 2002 May; 43(5):1655-61. PubMed ID: 11980887 [TBL] [Abstract][Full Text] [Related]
18. Differences in photoreceptor sensitivity to oxygen stress between Long Evans and Sprague-Dawley rats. Chrysostomou V; Stone J; Valter K Adv Exp Med Biol; 2010; 664():473-9. PubMed ID: 20238049 [TBL] [Abstract][Full Text] [Related]
19. Effects of oxygen and bFGF on the vulnerability of photoreceptors to light damage. Bowers F; Valter K; Chan S; Walsh N; Maslim J; Stone J Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):804-15. PubMed ID: 11222544 [TBL] [Abstract][Full Text] [Related]
20. Effects of subretinal electrical stimulation in mer-KO mice. Mocko JA; Kim M; Faulkner AE; Cao Y; Ciavatta VT; Pardue MT Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):4223-30. PubMed ID: 21467171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]