These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15162028)

  • 41. Radiation-induced chromosome aberrations: insights gained from biophysical modeling.
    Hlatky L; Sachs RK; Vazquez M; Cornforth MN
    Bioessays; 2002 Aug; 24(8):714-23. PubMed ID: 12210532
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Weighted identity test for the comparison of dose-response functions of radiation-induced chromosome aberrations.
    Streng S; Bauchinger M
    Radiat Environ Biophys; 1983; 22(3):189-200. PubMed ID: 6647754
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preferential location of x-ray induced chromosome breakage in the R-bands of human chromosomes.
    Holmberg M; Jonasson J
    Hereditas; 1973; 74(1):57-67. PubMed ID: 4758985
    [No Abstract]   [Full Text] [Related]  

  • 44. Chromatin structure and chromosome aberrations: modeling of damage induced by isotropic and localized irradiation.
    Kreth G; Münkel C; Langowski J; Cremer T; Cremer C
    Mutat Res; 1998 Aug; 404(1-2):77-88. PubMed ID: 9729289
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polymer chromosome models and Monte Carlo simulations of radiation breaking DNA.
    Ponomarev AL; Sachs RK
    Bioinformatics; 1999 Dec; 15(12):957-64. PubMed ID: 10745984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chromosome spatial clustering inferred from radiogenic aberrations.
    Arsuaga J; Greulich-Bode KM; Vazquez M; Bruckner M; Hahnfeldt P; Brenner DJ; Sachs R; Hlatky L
    Int J Radiat Biol; 2004 Jul; 80(7):507-15. PubMed ID: 15360089
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Radiobiological effects of a low-energy ion beam on wheat.
    Wu L; Yu Z
    Radiat Environ Biophys; 2001 Mar; 40(1):53-7. PubMed ID: 11357711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Underprediction of visibly complex chromosome aberrations by a recombinational-repair ('one-hit') model.
    Sachs RK; Rogoff A; Chen AM; Simpson PJ; Savage JR; Hahnfeldt P; Hlatky LR
    Int J Radiat Biol; 2000 Feb; 76(2):129-48. PubMed ID: 10716635
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nuclear architecture and radiation induced chromosome aberrations: models and simulations.
    Ballarini F; Biaggi M; Ottolenghi A
    Radiat Prot Dosimetry; 2002; 99(1-4):175-82. PubMed ID: 12194278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparing DNA damage-processing pathways by computer analysis of chromosome painting data.
    Levy D; Vazquez M; Cornforth M; Loucas B; Sachs RK; Arsuaga J
    J Comput Biol; 2004; 11(4):626-41. PubMed ID: 15579235
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison of radiation-induced chromosome aberration yields following culture in two types of synthetic media.
    Purrott RJ; Lloyd DC
    Mutat Res; 1973 Jun; 18(3):371-3. PubMed ID: 4712315
    [No Abstract]   [Full Text] [Related]  

  • 52. Role of DNA organisation and environmental scavenging capacity in the evolution of radiobiological damage: models and simulations.
    Ballarini F; Friedland W; Jacob P; Ottolenghi A; Paretzke HG; Scannicchio D; Valota A
    Radiother Oncol; 2004 Dec; 73 Suppl 2():S170-2. PubMed ID: 15971336
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cytogenetic biomonitoring of human radiation exposures: possibilities, problems and pitfalls.
    Sasaki MS
    J Radiat Res; 1992 Mar; 33 Suppl():44-53. PubMed ID: 1507178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using graph theory to describe and model chromosome aberrations.
    Sachs RK; Arsuaga J; Vázquez M; Hlatky L; Hahnfeldt P
    Radiat Res; 2002 Nov; 158(5):556-67. PubMed ID: 12385633
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Update on target theory as applied to chromosomal aberrations.
    Savage JR
    Environ Mol Mutagen; 1993; 22(4):198-207. PubMed ID: 8223499
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A brief survey of aberration origin theories.
    Savage JR
    Mutat Res; 1998 Aug; 404(1-2):139-47. PubMed ID: 9729341
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The oxygen effect on radiation-induced chromosome aberrations: breakage-versus-recombination hypotheses.
    GILES NH
    J Cell Physiol Suppl; 1955 May; 45(Suppl. 2):271-84; discussion, 309-16. PubMed ID: 13242635
    [No Abstract]   [Full Text] [Related]  

  • 58. Biological dosimetry by chromosome aberration scoring with parallel image processing with the Heidelberg POLYP Polyprocessor system.
    Bille J; Scharfenberg H; Männer R
    Comput Biol Med; 1983; 13(1):49-79. PubMed ID: 6831871
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromosome breakage and reunion: action of azaserine and x rays.
    Davidson D
    Z Vererbungsl; 1965 Jul; 96(3):217-27. PubMed ID: 5843816
    [No Abstract]   [Full Text] [Related]  

  • 60. Effects of the pyrrolizidine alkaloid heliotrine on cell division and chromosome breakage in cultures of leucocytes from the marsupial Potorous tridactylus.
    Bick YA; Jackson WD
    Aust J Biol Sci; 1968 Jun; 21(3):469-81. PubMed ID: 5664136
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.