BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15162392)

  • 1. Cytosolic NADP phosphatases I and II from Arthrobacter sp. strain KM: implication in regulation of NAD+/NADP+ balance.
    Kawai S; Mori S; Mukai T; Murata K
    J Basic Microbiol; 2004; 44(3):185-96. PubMed ID: 15162392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase.
    Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E
    Biochemistry; 1999 Aug; 38(35):11440-7. PubMed ID: 10471295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [NADPase and NADase in the peritoneal macrophages of mice].
    Nemchinskaia VL; Pokrovskaia TG; Mozhenok TP; Braun AD
    Tsitologiia; 1983 Jul; 25(7):799-804. PubMed ID: 6312646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H).
    Kawai S; Murata K
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):919-30. PubMed ID: 18391451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of aminopropionaldehyde dehydrogenase from Arthrobacter sp. TMP-1.
    Tanaka K; Matsuno E; Shimizu E; Shibai H; Yorifuji T
    FEMS Microbiol Lett; 2001 Feb; 195(2):191-6. PubMed ID: 11179651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of the short-chain flavin reductase HpaC from Sulfolobus tokodaii strain 7 in its three states: NAD(P)(+)(-)free, NAD(+)(-)bound, and NADP(+)(-)bound.
    Okai M; Kudo N; Lee WC; Kamo M; Nagata K; Tanokura M
    Biochemistry; 2006 Apr; 45(16):5103-10. PubMed ID: 16618099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dipodascus magnusii (Saccharomycetes) contains multiple glucose-6-phosphate dehydrogenases with different NAD+/NADP+ dependencies.
    Králová B; Valentová O; Demnerová K; Silhánková L
    Microbiologia; 1996 Mar; 12(1):85-90. PubMed ID: 9019138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae.
    Shi F; Kawai S; Mori S; Kono E; Murata K
    FEBS J; 2005 Jul; 272(13):3337-49. PubMed ID: 15978040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of 2,6-dihydroxypyridine 3-hydroxylase from a nicotine-degrading pathway.
    Treiber N; Schulz GE
    J Mol Biol; 2008 May; 379(1):94-104. PubMed ID: 18440023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of an NAD kinase from Archaeoglobus fulgidus in complex with ATP, NAD, or NADP.
    Liu J; Lou Y; Yokota H; Adams PD; Kim R; Kim SH
    J Mol Biol; 2005 Nov; 354(2):289-303. PubMed ID: 16242716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of a novel sialidase from a strain of Arthrobacter nicotianae.
    Abrashev I; Dulguerova G; Dolashka-Angelova P; Voelter W
    J Biochem; 2005 Mar; 137(3):365-71. PubMed ID: 15809338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of protocatechuate 4,5-dioxygenase induced from p-hydroxybenzoate-cultured Pseudomonas sp. K82.
    Yun SH; Yun CY; Kim SI
    J Microbiol; 2004 Jun; 42(2):152-5. PubMed ID: 15357311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory function of malate dehydrogenase isoenzymes in the cotyledons of mung bean.
    Asahi T; Nishimura M
    J Biochem; 1973 Feb; 73(2):217-25. PubMed ID: 4145405
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of alpha-Asp181, beta-Asp192, and gamma-Asp190 in the distinctive subunits of human NAD-specific isocitrate dehydrogenase.
    Bzymek KP; Colman RF
    Biochemistry; 2007 May; 46(18):5391-7. PubMed ID: 17432878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct effects of pyridoxal phosphate on NAD- and NADP- linked malic enzymes of Escherichia coli.
    Tokushige M; Hattori J; Katsuki H
    Physiol Chem Phys Med NMR; 1985; 17(4):347-50. PubMed ID: 3915362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid residues that determine functional specificity of NADP- and NAD-dependent isocitrate and isopropylmalate dehydrogenases.
    Kalinina OV; Gelfand MS
    Proteins; 2006 Sep; 64(4):1001-9. PubMed ID: 16767773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of D-threonine aldolase, a pyridoxal-5'-phosphate-dependent enzyme from Arthrobacter sp. DK-38.
    Kataoka M; Ikemi M; Morikawa T; Miyoshi T; Nishi K; Wada M; Yamada H; Shimizu S
    Eur J Biochem; 1997 Sep; 248(2):385-93. PubMed ID: 9346293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H.
    Schweiger P; Volland S; Deppenmeier U
    J Mol Microbiol Biotechnol; 2007; 13(1-3):147-55. PubMed ID: 17693722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MJ0917 in archaeon Methanococcus jannaschii is a novel NADP phosphatase/NAD kinase.
    Kawai S; Fukuda C; Mukai T; Murata K
    J Biol Chem; 2005 Nov; 280(47):39200-7. PubMed ID: 16192277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax.
    Lorentzen E; Hensel R; Knura T; Ahmed H; Pohl E
    J Mol Biol; 2004 Aug; 341(3):815-28. PubMed ID: 15288789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.