These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 15162415)
1. Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation. Khan YM; Katti DS; Laurencin CT J Biomed Mater Res A; 2004 Jun; 69(4):728-37. PubMed ID: 15162415 [TBL] [Abstract][Full Text] [Related]
2. The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering. Yao J; Radin S; S Leboy P; Ducheyne P Biomaterials; 2005 May; 26(14):1935-43. PubMed ID: 15576167 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
4. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
5. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849 [TBL] [Abstract][Full Text] [Related]
6. A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. Ambrosio AM; Sahota JS; Khan Y; Laurencin CT J Biomed Mater Res; 2001 May; 58(3):295-301. PubMed ID: 11319744 [TBL] [Abstract][Full Text] [Related]
7. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Jiang T; Abdel-Fattah WI; Laurencin CT Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408 [TBL] [Abstract][Full Text] [Related]
8. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074 [TBL] [Abstract][Full Text] [Related]
9. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
10. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
11. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. Karp JM; Shoichet MS; Davies JE J Biomed Mater Res A; 2003 Feb; 64(2):388-96. PubMed ID: 12522827 [TBL] [Abstract][Full Text] [Related]
12. Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. Kang SW; Yang HS; Seo SW; Han DK; Kim BS J Biomed Mater Res A; 2008 Jun; 85(3):747-56. PubMed ID: 17896763 [TBL] [Abstract][Full Text] [Related]
13. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of a highly macroporous biodegradable composite tissue engineering scaffold. Guan L; Davies JE J Biomed Mater Res A; 2004 Dec; 71(3):480-7. PubMed ID: 15478140 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of poly(lactic-co-glycolic acid) microsphere/amorphous calcium phosphate scaffolds. Popp JR; Laflin KE; Love BJ; Goldstein AS J Tissue Eng Regen Med; 2012 Jan; 6(1):12-20. PubMed ID: 21312335 [TBL] [Abstract][Full Text] [Related]
16. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
17. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. Murphy WL; Kohn DH; Mooney DJ J Biomed Mater Res; 2000 Apr; 50(1):50-8. PubMed ID: 10644963 [TBL] [Abstract][Full Text] [Related]
18. Novel tubular composite matrix for bone repair. Kofron MD; Cooper JA; Kumbar SG; Laurencin CT J Biomed Mater Res A; 2007 Aug; 82(2):415-25. PubMed ID: 17295242 [TBL] [Abstract][Full Text] [Related]
19. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Patlolla A; Collins G; Arinzeh TL Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair. Devin JE; Attawia MA; Laurencin CT J Biomater Sci Polym Ed; 1996; 7(8):661-9. PubMed ID: 8639475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]